转载 Deep learning:三(Multivariance Linear Regression练习)
前言:
本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regression练习)中已经简单介绍过一元线性回归问题的求解,但是那个时候用梯度下降法求解时,给出的学习率是固定的0.7.而本次实验中学习率需要自己来选择,因此我们应该从小到大(比如从0.001到10)来选择,通过观察损失值与迭代次数之间的函数曲线来决定使用哪个学习速率。当有了学习速率alpha后,则本问问题求解方法和上面的没差别。
本文要解决的问题是给出了47个训练样本,训练样本的y值为房子的价格,x属性有2个,一个是房子的大小,另一个是房子卧室的个数。需要通过这些训练数据来学习系统的函数,从而预测房子大小为1650,且卧室有3个的房子的价格。
实验基础:
dot(A,B):表示的是向量A和向量B的内积。
又线性回归的理论可以知道系统的损失函数如下所示:
其向量表达形式如下:
当使用梯度下降法进行参数的求解时,参数的更新公式如下:
当然它也有自己的向量形式(程序中可以体现)。
实验结果:
测试学习率的结果如下:
由此可知,选用学习率为1时,可以到达很快的收敛速度,因此最终的程序中使用的学习率为1.
最终使用梯度下降法和公式法的预测结果如下:
可以看出两者的结果是一致的。
实验主要程序及代码:
%% 方法一:梯度下降法
x = load('ex3x.dat');
y = load('ex3y.dat'); x = [ones(size(x,1),1) x];
meanx = mean(x);%求均值
sigmax = std(x);%求标准偏差
x(:,2) = (x(:,2)-meanx(2))./sigmax(2);
x(:,3) = (x(:,3)-meanx(3))./sigmax(3); figure
itera_num = 100; %尝试的迭代次数
sample_num = size(x,1); %训练样本的次数
alpha = [0.01, 0.03, 0.1, 0.3, 1, 1.3];%因为差不多是选取每个3倍的学习率来测试,所以直接枚举出来
plotstyle = {'b', 'r', 'g', 'k', 'b--', 'r--'}; theta_grad_descent = zeros(size(x(1,:)));
for alpha_i = 1:length(alpha) %尝试看哪个学习速率最好
theta = zeros(size(x,2),1); %theta的初始值赋值为0
Jtheta = zeros(itera_num, 1);
for i = 1:itera_num %计算出某个学习速率alpha下迭代itera_num次数后的参数
Jtheta(i) = (1/(2*sample_num)).*(x*theta-y)'*(x*theta-y);%Jtheta是个行向量
grad = (1/sample_num).*x'*(x*theta-y);
theta = theta - alpha(alpha_i).*grad;
end
plot(0:49, Jtheta(1:50),char(plotstyle(alpha_i)),'LineWidth', 2)%此处一定要通过char函数来转换
hold on if(1 == alpha(alpha_i)) %通过实验发现alpha为1时效果最好,则此时的迭代后的theta值为所求的值
theta_grad_descent = theta
end
end
legend('0.01','0.03','0.1','0.3','1','1.3');
xlabel('Number of iterations')
ylabel('Cost function') %下面是预测公式
price_grad_descend = theta_grad_descent'*[1 (1650-meanx(2))/sigmax(2) (3-meanx(3)/sigmax(3))]' %%方法二:normal equations
x = load('ex3x.dat');
y = load('ex3y.dat');
x = [ones(size(x,1),1) x]; theta_norequ = inv((x'*x))*x'*y
price_norequ = theta_norequ'*[1 1650 3]'
参考资料:
Deep learning:二(linear regression练习)
作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。
转载 Deep learning:三(Multivariance Linear Regression练习)的更多相关文章
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- 转载 Deep learning:四(logistic regression练习)
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage ...
- Multivariance Linear Regression练习
%% 方法一:梯度下降法 x = load('E:\workstation\data\ex3x.dat'); y = load('E:\workstation\data\ex3y.dat'); x = ...
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
- [转载]Deep Learning(深度学习)学习笔记整理
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...
- Andrew Ng Machine Learning 专题【Linear Regression】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...
- 转载 deep learning:八(SparseCoding稀疏编码)
转载 http://blog.sina.com.cn/s/blog_4a1853330102v0mr.html Sparse coding: 本节将简单介绍下sparse coding(稀疏编码),因 ...
- 转载 Deep learning:六(regularized logistic回归练习)
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...
- CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...
随机推荐
- insertMany
结果:
- Chapter7 迭代器
结合泛型for的所有功能,写出更加简单,高效的迭代器. 1.迭代器和closure 迭代器是一种可以遍历集合中所有元素的机制.在Lua中用函数去表示它. 每调用一次,就返回下一个元素. 迭代器在两次成 ...
- 纯计算监控(Pure computed observables)
纯计算监控,在knockout 3.2.0里才有,提供了对性能和内存更好的管理.这是因为纯计算监控不包含对他的依赖的订阅.特点有: 防止内存泄漏 降低计算开销:值不再是observed,是一个不会重新 ...
- UVALive 2520 Holedox Moving(BFS+状态压缩)
这个题目在比赛的时候我们是没有做出来的,但是听到他们说进制哈希的时候,感觉真的是挺高端的,于是赛后开始补题,本着我的习惯在看题解之前自己再试着写一遍,我当时存储状态的方法是string + map,我 ...
- MFC中为菜单或按钮添加快捷键功能
1.新建一快捷键资源,ACCELERATOR,关联相应的ID号,下图所示中,其中,第一个ID为自定义快捷键ID,按CTRL+R,此时响应该ID以应的消息响应函数, 第二个ID为菜单ID,此时按CTRL ...
- EDD-SPT综合规则
关于生产运作的计算题· 很急 谢谢·有7项任务需经某设备加工,各任务资料如下.要求:(1)试用EDD-SPT综合规则确定加工顺序(2)分别计算两种规则下的平均流程时间. 任务 J1 J2 J3 J4 ...
- spark 编程向导
http://spark.apache.org/docs/latest/programming-guide.html
- hdu_2089_不要62(数位DP)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 题意:中文,不解释 题解:dp[i][j]表示当前第i位的前一个数为j,然后记忆化dfs,注意的 ...
- HDU1073:Online Judge
Problem Description Ignatius is building an Online Judge, now he has worked out all the problems exc ...
- Git撤销暂存区stage中的内容
$ git add readme.txt提交到了stage中. $ git statusOn branch masterChanges to be committed: (use "git ...