题目传送门

题意:给了四个点,判断能构成什么图形,有优先规则

分析:正方形和矩形按照点积为0和长度判断,菱形和平行四边形按向量相等和长度判断,梯形按照叉积为0判平行。因为四个点是任意给出的,首先要进行凸包排序,可能会有三点共线的情况。

/************************************************
* Author :Running_Time
* Created Time :2015/10/22 星期四 13:27:33
* File Name :UVA_11800.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
struct Point { //点的定义
double x, y;
Point (double x=0, double y=0) : x (x), y (y) {}
};
typedef Point Vector; //向量的定义
Point read_point(void) { //点的读入
double x, y;
scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double polar_angle(Vector A) { //向量极角
return atan2 (A.y, A.x);
}
double dot(Vector A, Vector B) { //向量点积
return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B) { //向量叉积
return A.x * B.y - A.y * B.x;
}
int dcmp(double x) { //三态函数,减少精度问题
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
Vector operator + (Vector A, Vector B) { //向量加法
return Vector (A.x + B.x, A.y + B.y);
}
Vector operator - (Vector A, Vector B) { //向量减法
return Vector (A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p) { //向量乘以标量
return Vector (A.x * p, A.y * p);
}
Vector operator / (Vector A, double p) { //向量除以标量
return Vector (A.x / p, A.y / p);
}
bool operator < (const Point &a, const Point &b) { //点的坐标排序
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool operator == (const Point &a, const Point &b) { //判断同一个点
return dcmp (a.x - b.x) == 0 && dcmp (a.y - b.y) == 0;
}
double length(Vector A) { //向量长度,点积
return sqrt (dot (A, A));
}
double angle(Vector A, Vector B) { //向量转角,逆时针,点积
return acos (dot (A, B) / length (A) / length (B));
}
double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积
return fabs (cross (b - a, c - a)) / 2.0;
}
Vector rotate(Vector A, double rad) { //向量旋转,逆时针
return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A) { //向量的单位法向量
double len = length (A);
return Vector (-A.y / len, A.x / len);
}
Point point_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程
Vector U = p - q;
double t = cross (W, U) / cross (V, W);
return p + V * t;
}
double dis_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式
Vector V1 = b - a, V2 = p - a;
return fabs (cross (V1, V2)) / length (V1);
}
double dis_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式 if (a == b) return length (p - a);
Vector V1 = b - a, V2 = p - a, V3 = p - b;
if (dcmp (dot (V1, V2)) < 0) return length (V2);
else if (dcmp (dot (V1, V3)) > 0) return length (V3);
else return fabs (cross (V1, V2)) / length (V1);
}
Point point_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式
Vector V = b - a;
return a + V * (dot (V, p - a) / dot (V, V));
}
bool inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool on_seg(Point p, Point a1, Point a2) { //判断点在线段上,两点式
return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
}
double area_poly(Point *p, int n) { //多边形面积
double ret = 0;
for (int i=1; i<n-1; ++i) {
ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
}
return ret / 2;
} /*
点集凸包,输入点集会被修改
*/
vector<Point> convex_hull(vector<Point> &P) {
sort (P.begin (), P.end ());
P.erase (unique (P.begin (), P.end ()), P.end ()); //预处理,删除重复点
int n = P.size (), m = 0;
vector<Point> ret (n + 1);
for (int i=0; i<n; ++i) {
while (m > 1 && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--;
ret[m++] = P[i];
}
int k = m;
for (int i=n-2; i>=0; --i) {
while (m > k && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--;
ret[m++] = P[i];
}
if (n > 1) m--;
ret.resize (m);
return ret;
} char name[6][30] = {
"Square", "Rectangle", "Rhombus", "Parallelogram", "Trapezium", "Ordinary Quadrilateral"
}; int run(int cas) {
printf ("Case %d: ", cas);
vector<Point> P;
for (int i=0; i<4; ++i) {
P.push_back (read_point ());
}
vector<Point> Ps = convex_hull (P);
if (Ps.size () != 4) return 5;
Point &a = Ps[0], &b = Ps[1], &c = Ps[2], &d = Ps[3];
/* a d
b c */
Vector ba = b - a, da = d - a, cd = c - d, cb = c - b;
double lba = length (ba), lcd = length (cd), lda = length (da), lcb = length (cb);
if (dot (ba, da) == 0 && dot (da, cd) == 0 && dot (cb, cd) == 0) {
if (lba == lcb) return 0;
else return 1;
}
if (ba == cd && da == cb) {
if (lba == lda) return 2;
else return 3;
}
if (cross (ba, cd) == 0 || cross (da, cb) == 0) return 4;
else return 5;
} int main(void) {
Point a, b, c, d;
int T, cas = 0; scanf ("%d", &T);
while (T--) {
printf ("%s\n", name[run (++cas)]);
} return 0;
}

  

简单几何(四边形形状) UVA 11800 Determine the Shape的更多相关文章

  1. uva 11800 Determine the Shape

    vjudge上题目链接:Determine the Shape 第二道独自 A 出的计算几何水题,题意就是给你四个点,让你判断它是哪种四边形:正方形.矩形.菱形.平行四边形.梯形 or 普通四边形. ...

  2. UVA 11800 - Determine the Shape 几何

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  3. UVA 11800 Determine the Shape --凸包第一题

    题意: 给四个点,判断四边形的形状.可能是正方形,矩形,菱形,平行四边形,梯形或普通四边形. 解法: 开始还在纠结怎么将四个点按序排好,如果直接处理的话,有点麻烦,原来凸包就可搞,直接求个凸包,然后点 ...

  4. 简单几何(数学公式+凸包) UVA 11168 Airport

    题目传送门 题意:找一条直线,使得其余的点都在直线的同一侧,而且使得到直线的平均距离最短. 分析:训练指南P274,先求凸包,如果每条边都算一边的话,是O (n ^ 2),然而根据公式知直线一般式为A ...

  5. 简单几何(推公式) UVA 11646 Athletics Track

    题目传送门 题意:给了长宽比例,操场一圈400米,问原来长宽的长度 分析:推出公式 /************************************************ * Author ...

  6. 简单几何(求交点) UVA 11437 Triangle Fun

    题目传送门 题意:三角形三等分点连线组成的三角形面积 分析:入门题,先求三等分点,再求交点,最后求面积.还可以用梅涅劳斯定理来做 /********************************** ...

  7. 简单几何(求交点) UVA 11178 Morley's Theorem

    题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...

  8. Python下opencv使用笔记(二)(简单几何图像绘制)

    简单几何图像一般包含点.直线.矩阵.圆.椭圆.多边形等等.首先认识一下opencv对像素点的定义. 图像的一个像素点有1或者3个值.对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值.他们表现出 ...

  9. Codeforces 935 简单几何求圆心 DP快速幂求与逆元

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

随机推荐

  1. POJ 3274 Gold Balanced Lineup

    Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...

  2. loadrunner跑场景的时候出现:Abnormal termination, caused by mdrv process termination

    1.问题 loadrunner跑场景的时候出现:Abnormal termination, caused by mdrv process termination. 备注:我使用的是RTE协议录制的脚本 ...

  3. HDU 4925 Apple Tree(模拟题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4925 解题报告:给你n*m的土地,现在对每一块土地有两种操作,最多只能在每块土地上进行两种操作,第一种 ...

  4. [Effective JavaScript 笔记]第30条:理解prototype、getPrototypeOf和__ptoto__之间的不同

    原型包括三个独立但相关的访问器.这三个单词都是对单词prototype做了一些变化. C.prototype用于建立由new C()创建的对象的原型 Object.getPrototypeOf(obj ...

  5. linux下vim命令详解 转自: zhanglong0426

      高级一些的编辑器,都会包含宏功能,vim当然不能缺少了,在vim中使用宏是非常方便的: :qx     开始记录宏,并将结果存入寄存器xq     退出记录模式@x     播放记录在x寄存器中的 ...

  6. linux 文件权限除了r、w、x外还有s、t、i、a权限:

    s:文件属主和组设置SUID和GUID,文件在被设置了s权限后将以root身份执行.在设置s权限时文件属主.属组必须先设置相应的x权限,否 则s权限并不能正真生效(c h m o d命令不进行必要的完 ...

  7. JS匿名函数的理解

    js匿名函数的代码如下:(function(){ // 这里忽略jQuery 所有实现 })(); 半年前初次接触jQuery 的时候,我也像其他人一样很兴奋地想看看源码是什么样的.然而,在看到源码的 ...

  8. Eclipse 项目红色叹号:Build Path Problem

    Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...

  9. ffplay 2.5.3 媒体播放器

    下载地址 http://pan.baidu.com/s/1bnlMYB1 一定要解压到 D:\ffmpeg\ 目录下 双击 OpenWith_FFPlay.reg 注册ffplay 在视频文件名上面, ...

  10. 11.python之线程,协程,进程,

    一,进程与线程 1.什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行 ...