Codeforces 286E - Ladies' Shop(FFT)
好久没刷过 FFT/NTT 的题了,写篇题解罢(
首先考虑什么样的集合 \(T\) 符合条件。我们考察一个 \(x\in S\),根据题意它能够表示成若干个 \(\in T\) 的数之和,这样一来我们可以分出两种情况,如果 \(x\) 本来就属于 \(T\),那么 \(x\) 自然就符合条件,这种情况我们暂且忽略不管。否则根据题设,必然存在一个数列 \(b_1,b_2,\cdots,b_m\),满足 \(m\ge 2,\forall i\in[1,m],b_i\in T\),且 \(\sum\limits_{i=1}^mb_i=x\)。由于 \(m\ge 2\),我们可以将第一项与后面 \(m-1\) 项分开来,即 \(b_1+\sum\limits_{i=2}^mb_i\)。根据题意前两个应当都 \(\in S\),也就是说如果一个数 \(x\) 可以表示成两个及以上的 \(T\) 中的数的和的必要条件是 \(\exists y,z\in S,s.t.y+z=x\),因此我们假设 \(S'\) 为可以表示成两个 \(S\) 中元素之和的 \(x\) 组成的集合,那么考虑分以下几种情况考虑:
- 如果存在一个 \(x\in S'\) 但不属于 \(S\),那么根据题意可知 \(x\) 也应当可以被 \(T\) 中元素表示出来,与条件不符。
- 如果不存在属于 \(S'\) 但不属于 \(S\) 的 \(S\),那么我们考虑 \(T=\{x|x\notin S',x\in S\}\),那么 \(T\) 即为所求。为什么呢?首先显然所有 \(x\in S',x\in S\) 的数必须都属于 \(T\),因为根据之前的分析,所有可以表示成两个即以上 \(T\) 中数的和的数都应当 \(\in S'\)。其次对于所有可以表示成两个及以上的数的 \(x\),也就是每个集合中的 \(x\),学过线性代数那一套理论的同学应该明白,删掉这样的 \(x\) 是不影响集合所有数能拼出的数的集合的,这样反复进行下去即可将 \(S'\) 删空,剩余的部分就是集合 \(T\) 了。因此集合 \(T\) 符合条件。
那么怎么求 \(S'\) 呢?其实非常 trivial()考虑幂级数 \(A(x)=\sum\limits_{i=1}^nx^{a_i}\),那么 \(S'\) 即为 \(A^2(x)\) 中系数非零且 \(\le m\) 的项组成的集合。FFT 求出即可。
时间复杂度 \(m\log m\)
const int MAXN=1e6;
const int MAXP=1<<21;
const double Pi=acos(-1);
int n,m,a[MAXN+5];
struct comp{
double x,y;
comp(double _x=0,double _y=0):x(_x),y(_y){}
comp operator +(const comp &rhs){return comp(x+rhs.x,y+rhs.y);}
comp operator -(const comp &rhs){return comp(x-rhs.x,y-rhs.y);}
comp operator *(const comp &rhs){return comp(x*rhs.x-y*rhs.y,x*rhs.y+y*rhs.x);}
} A[MAXP+5];
int rev[MAXP+5],LEN=1;
void FFT(comp *a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
comp W(cos(2*Pi/i),type*sin(2*Pi/i));
for(int j=0;j<len;j+=i){
comp w(1,0);
for(int k=0;k<(i>>1);k++,w=w*W){
comp X=a[j+k],Y=a[(i>>1)+j+k]*w;
a[j+k]=X+Y;a[(i>>1)+j+k]=X-Y;
}
}
} if(!~type){
for(int i=0;i<len;i++) a[i].x=(int)(a[i].x/len+0.5);
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1,x;i<=n;i++) scanf("%d",&x),a[x]++;
for(int i=1;i<=m;i++) A[i].x=a[i];
while(LEN<=(m+m)) LEN<<=1;FFT(A,LEN,1);
for(int i=0;i<LEN;i++) A[i]=A[i]*A[i];
FFT(A,LEN,-1);
// for(int i=1,v;i<=m;i++) printf("%d%c",(v=(int)(A[i].x))," \n"[i==m]);
for(int i=1,v;i<=m;i++) if((v=(int)(A[i].x))&&!a[i]) return puts("NO"),0;
vector<int> res;
for(int i=1,v;i<=m;i++) if(((v=(int)(A[i].x))>0)^a[i]) res.pb(i);
printf("YES\n%d\n",res.size());
for(int x:res) printf("%d ",x);
return 0;
}
upd on 2021.9.21:真·《好久没刷过》
https://codeforces.ml/contest/1574/problem/F
Codeforces 286E - Ladies' Shop(FFT)的更多相关文章
- codeforces 286 E. Ladies' Shop (FFT)
E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...
- CodeForces 286E Ladies' Shop 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 528D Fuzzy Search(FFT)
题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...
- codeforces 286E Ladies' Shop
题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数. 题目分析: 结论一:选择的若干个数一定在n个数中. 证明:否则的 ...
- 2019.01.26 codeforces 528D. Fuzzy Search(fft)
传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...
- 快速傅里叶(FFT)的快速深度思考
关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在 ...
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- 【BZOJ4827】【HNOI2017】礼物(FFT)
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...
随机推荐
- 周末愉快--css画大熊猫
周末找了点轻松的话题,css画大熊猫. 先上效果图 欢迎竞猜大熊猫到底说了什么?? 再上源码 <!DOCTYPE html> <html lang="en"> ...
- 2019OO第三单元作业总结
OO第三单元的作业主题是JML规格化设计,作业以图及图的最短路径相关计算为载体,体现接口的规格化设计. ------------------------------------------------ ...
- 热身 for computer industry
项目 内容 作业属于 班级博客 作业要求 作业要求 个人课程目标 掌握软件工程基础知识 具体有助方面 个人认知与规划 其他参考文献 博客Ⅰ 博客 Ⅱ 选择计算机 你为什么选择计算机专业?你认为你的条件 ...
- spring session实现session统一管理(jdbc实现)
最近在看一些关于spring session 的知识,特做一个笔记记录一下. 在项目中经常会遇到这么一种情况,同一个web项目有时需要部署多份,然后使用nginx实现负载均衡,那么遇到的问题就是,部署 ...
- 热身训练2 Another Meaning
题目来源 简要题意: 众所周知,在许多情况下,一个词语有两种意思.比如"hehe",不仅意味着"hehe",还意味着"excuse me". ...
- [火星补锅] 水题大战Vol.2 T2 && luogu P3623 [APIO2008]免费道路 题解
前言: 如果我自己写的话,或许能想出来正解,但是多半会因为整不出正确性而弃掉. 解析: 这题算是对Kruskal的熟练运用吧. 要求一颗生成树.也就是说,最后的边数是确定的. 首先我们容易想到一个策略 ...
- NorFlash、NandFlash在技术和应用上有些什么区别?
首先你要搞懂什么是Flash Memory? Flash Memory(快闪存储器),是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器.这种科技主要用于一般性数据存储,以及在 ...
- stm32学习笔记之串口通信
在基础实验成功的基础上,对串口的调试方法进行实践.硬件代码顺利完成之后,对日后调试需要用到的printf重定义进行调试,固定在自己的库函数中. b) 初始化函数定义: void USART_Confi ...
- TCP之拥塞窗口原理
学过网络相关课程的,都知道TCP中,有两个窗口: 滑动窗口(在我们的上一篇文章中有讲),接收方通过通告发送方自己的可以接受缓冲区大小(这个字段越大说明网络吞吐量越高),从而控制发送方的发送速度. 拥塞 ...
- linux 内核源代码情景分析——用户堆栈的扩展
上一节中,我们浏览了一次因越界访问而造成映射失败从而引起进程流产的过程,不过有时候,越界访问时正常的.现在我们就来看看当用户堆栈过小,但是因越界访问而"因祸得福"得以伸展的情景. ...