Codeforces 286E - Ladies' Shop(FFT)
好久没刷过 FFT/NTT 的题了,写篇题解罢(
首先考虑什么样的集合 \(T\) 符合条件。我们考察一个 \(x\in S\),根据题意它能够表示成若干个 \(\in T\) 的数之和,这样一来我们可以分出两种情况,如果 \(x\) 本来就属于 \(T\),那么 \(x\) 自然就符合条件,这种情况我们暂且忽略不管。否则根据题设,必然存在一个数列 \(b_1,b_2,\cdots,b_m\),满足 \(m\ge 2,\forall i\in[1,m],b_i\in T\),且 \(\sum\limits_{i=1}^mb_i=x\)。由于 \(m\ge 2\),我们可以将第一项与后面 \(m-1\) 项分开来,即 \(b_1+\sum\limits_{i=2}^mb_i\)。根据题意前两个应当都 \(\in S\),也就是说如果一个数 \(x\) 可以表示成两个及以上的 \(T\) 中的数的和的必要条件是 \(\exists y,z\in S,s.t.y+z=x\),因此我们假设 \(S'\) 为可以表示成两个 \(S\) 中元素之和的 \(x\) 组成的集合,那么考虑分以下几种情况考虑:
- 如果存在一个 \(x\in S'\) 但不属于 \(S\),那么根据题意可知 \(x\) 也应当可以被 \(T\) 中元素表示出来,与条件不符。
- 如果不存在属于 \(S'\) 但不属于 \(S\) 的 \(S\),那么我们考虑 \(T=\{x|x\notin S',x\in S\}\),那么 \(T\) 即为所求。为什么呢?首先显然所有 \(x\in S',x\in S\) 的数必须都属于 \(T\),因为根据之前的分析,所有可以表示成两个即以上 \(T\) 中数的和的数都应当 \(\in S'\)。其次对于所有可以表示成两个及以上的数的 \(x\),也就是每个集合中的 \(x\),学过线性代数那一套理论的同学应该明白,删掉这样的 \(x\) 是不影响集合所有数能拼出的数的集合的,这样反复进行下去即可将 \(S'\) 删空,剩余的部分就是集合 \(T\) 了。因此集合 \(T\) 符合条件。
那么怎么求 \(S'\) 呢?其实非常 trivial()考虑幂级数 \(A(x)=\sum\limits_{i=1}^nx^{a_i}\),那么 \(S'\) 即为 \(A^2(x)\) 中系数非零且 \(\le m\) 的项组成的集合。FFT 求出即可。
时间复杂度 \(m\log m\)
const int MAXN=1e6;
const int MAXP=1<<21;
const double Pi=acos(-1);
int n,m,a[MAXN+5];
struct comp{
double x,y;
comp(double _x=0,double _y=0):x(_x),y(_y){}
comp operator +(const comp &rhs){return comp(x+rhs.x,y+rhs.y);}
comp operator -(const comp &rhs){return comp(x-rhs.x,y-rhs.y);}
comp operator *(const comp &rhs){return comp(x*rhs.x-y*rhs.y,x*rhs.y+y*rhs.x);}
} A[MAXP+5];
int rev[MAXP+5],LEN=1;
void FFT(comp *a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
comp W(cos(2*Pi/i),type*sin(2*Pi/i));
for(int j=0;j<len;j+=i){
comp w(1,0);
for(int k=0;k<(i>>1);k++,w=w*W){
comp X=a[j+k],Y=a[(i>>1)+j+k]*w;
a[j+k]=X+Y;a[(i>>1)+j+k]=X-Y;
}
}
} if(!~type){
for(int i=0;i<len;i++) a[i].x=(int)(a[i].x/len+0.5);
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1,x;i<=n;i++) scanf("%d",&x),a[x]++;
for(int i=1;i<=m;i++) A[i].x=a[i];
while(LEN<=(m+m)) LEN<<=1;FFT(A,LEN,1);
for(int i=0;i<LEN;i++) A[i]=A[i]*A[i];
FFT(A,LEN,-1);
// for(int i=1,v;i<=m;i++) printf("%d%c",(v=(int)(A[i].x))," \n"[i==m]);
for(int i=1,v;i<=m;i++) if((v=(int)(A[i].x))&&!a[i]) return puts("NO"),0;
vector<int> res;
for(int i=1,v;i<=m;i++) if(((v=(int)(A[i].x))>0)^a[i]) res.pb(i);
printf("YES\n%d\n",res.size());
for(int x:res) printf("%d ",x);
return 0;
}
upd on 2021.9.21:真·《好久没刷过》
https://codeforces.ml/contest/1574/problem/F
Codeforces 286E - Ladies' Shop(FFT)的更多相关文章
- codeforces 286 E. Ladies' Shop (FFT)
E. Ladies' Shop time limit per test 8 seconds memory limit per test 256 megabytes input standard inp ...
- CodeForces 286E Ladies' Shop 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8781889.html 题目传送门 - CodeForces 286E 题意 首先,给你$n$个数(并告诉你$m$ ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 528D Fuzzy Search(FFT)
题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...
- codeforces 286E Ladies' Shop
题目大意:n个小于等于m的数,现在你需要在[1,m]中选择若干个数,使得选出的数能组成的所有数正好与n个数相同,给出最少要选多少个数. 题目分析: 结论一:选择的若干个数一定在n个数中. 证明:否则的 ...
- 2019.01.26 codeforces 528D. Fuzzy Search(fft)
传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...
- 快速傅里叶(FFT)的快速深度思考
关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在 ...
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- 【BZOJ4827】【HNOI2017】礼物(FFT)
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...
随机推荐
- 如何查找一个目录中所有c文件的总行数
如何查找一个目录中所有c文件的行数 面试题问到了一题,如何统计wc文件夹下所有文件的行数,包括了子目录. 最后在 https://blog.csdn.net/a_ran/article/details ...
- python常用内置函数(转载)
1. 和数字相关 1.1 数据类型 1.2 进制转换 1.3 数学运算 2. 和数据结构相关 2.1 序列 2.2 数据集合 2.3 相关内置函数 3. 和作用域相关 4. 和迭代器生成器相关 5. ...
- 4.14——208. 实现 Trie (前缀树)
前缀树(字典树)是经典的数据结构,以下图所示: 本来处理每个节点的子节点集合需要用到set,但是因为输入规定了只有26个小写字母,可以直接用一个[26]的数组来存储. 关于ASCII代码: Java ...
- 这样学BAT必面之软件设计原则,还不会就是我的问题
学习设计原则是学习设计模式的基础.在实际开发过程中,并不要求所有代码都遵循设计原则,我们要考虑人力.时间.成本.质量,不能刻意追求完美,但要在适当的场景遵循设计原则,这体现的是一种平衡取舍,可以帮助我 ...
- noj -> 跳马
00 题目 描述: 在国际象棋中,马的走法与中车象棋类似,即俗话说的"马走日",下图所示即国际象棋中马(K)在一步能到达的格子(其中黑色的格子是能到达的位置). 现有一200*20 ...
- [Beta]the Agiles Scrum Meeting 3
会议时间:2020.5.14 20:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 yjy 实现前端界面美化 tq 实现查看.删除测试点功能的前端修复功能中的bug wjx 升级系统实现 ...
- oo第四单元及期末总结
一.第四单元作业架构总结 第一次UML作业: 在分析各指令所需要的信息后建立了类(class),操作(operation),属性(Attribute)这几个类用来存储分析后的结果,而接口在本次作业中与 ...
- 搬运2:早期写的探究printf
目录: 1. 关于printf格式化输出 2. printf的一般形式 3. 转换说明 4. 格式化输出的意义 5. 转换说明修饰符 6. 修饰符中的标记 7. printf的返回值 ps:共3250 ...
- 用C++实现的数独解题程序 SudokuSolver 2.6 的新功能及相关分析
SudokuSolver 2.6 的新功能及相关分析 SudokuSolver 2.6 的命令清单如下: H:\Read\num\Release>sudoku.exe Order please: ...
- TypeError: 'encoding' is an invalid keyword argument for this function 解决Python 2.7
在python2.7中这样调用代码 open('file/name.txt','r',encoding= 'utf-8').read() 会出现 TypeError: 'encoding' is an ...