前言

蒟弱本来是在亿万年前做二分答案专题栅栏的,由于数据水所以过掉了,后来发现有一个数据加强版,也就是本题,于是爆T了...过了有个五六个月回来填坑了...现在开O2是在最优解第一个(自豪ing

题目描述

有 \(n\) 块 大小分别为 \(a_i\) 的蛋糕,分给 \(m\) 个嘴大小分别为 \(b_i\) 的人,但是蛋糕只能以整块的形式给人,求最多给多少人。

思路

很明显,答案在排序之后具有单调性,所以可以二分能够分给多少人,但二分并没有一个明确的套路切蛋糕,所以需要进行深搜;

于是来考虑最优贪心策略:

  1. 首先将所有蛋糕和嘴的大小排序,优先喂嘴小的人;

对应着这两行:

n=read();F(i,1,n)a[i]=read(),tot+=a[i];std::sort(a+1,a+n+1);
m=read();F(i,1,m)b[i]=read();std::sort(b+1,b+m+1);
  1. 排完序后,考虑缩小二分范围,我们从小到大求得嘴大小的前缀和,如果到第 \(i\) 个人的嘴大小总和 \(pre_i\) 超过了上面求出的蛋糕大小总和 \(tot\),或者 \(b_i>a[n]\),那么到这里无论如何切都无法满足条件,二分的最大边界就是 \(i-1\) 了。另外,如果蛋糕总和都比最小的嘴小,那么一个也不能满足。

对应着这三行:

if(tot<b[1]){pi(0);return 0;}
F(i,1,m){pre[i]=pre[i-1]+b[i];if(pre[i]>tot||b[i]>a[n]){cnt=i-1;break;}}
if(!cnt)cnt=m;

我们开始二分+深搜:

  1. 在深搜过程中,枚举能够切下够这口嘴吃的蛋糕,切掉后蛋糕总大小要减去嘴的大小。如果这块蛋糕切剩下的不够最小嘴的,那么就相当于这块蛋糕没有用了,蛋糕总大小要再减去没有用的这部分。

也就是这样:

if(a[i]>=b[x]){
a[i]-=b[x];tot-=b[x];
if(a[i]<b[1])tot-=a[i];
}
  1. 显然,当剩下几张嘴的总大小比剩下几块蛋糕的总大小还要大时,方案是不符合的。

也就是这句:

if(pre[x]>tot)return 0;
  1. 当当前搜索到的这口嘴与下一个要搜索的嘴大小相同时,既然已经枚举到了第 \(i\) 块蛋糕,说明第 \(i\) 块蛋糕之前的蛋糕对于这个大小的嘴都是没有正确方案的,于是搜索下一口嘴时就可以直接从第 \(i\) 块蛋糕枚举。

这句话的实现长这样:

if(b[x]==b[x-1])fl=check(x-1,i);else fl=check(x-1,1);

最后无论有没有正确方案都要记得回溯啊!

if(a[i]<b[1])tot+=a[i];
a[i]+=b[x];tot+=b[x];

到最后如果枚举完所有的蛋糕都没有正确方案,就可以直接 \(return\ 0\) 了。

于是本题就可以愉快的结束了~

CODE

#include<cstring>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
namespace EMT{
#define pf printf
#define F(i,a,b) for(register int i=a;i<=b;i++)
#define D(i,a,b) for(register int i=a;i>=b;i--)
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();return x*f;}
inline void pi(int x){pf("%d",x);}inline void pn(){pf("\n");}inline void ps(int a[],int size){F(i,1,size)pi(a[i]);pn();}
int n,m,a[55],b[1100],ans,cnt,ws,tot,pre[1100];
inline bool check(int x,int st){
if(!x)return 1;
if(pre[x]>tot)return 0;
bool fl=0;
F(i,st,n){
if(a[i]>=b[x]){
a[i]-=b[x];tot-=b[x];
if(a[i]<b[1])tot-=a[i];
if(b[x]==b[x-1])fl=check(x-1,i);else fl=check(x-1,1);
if(a[i]<b[1])tot+=a[i];
a[i]+=b[x];tot+=b[x];
if(fl)return 1;
}
}return 0;
}
inline short main(){
n=read();F(i,1,n)a[i]=read(),tot+=a[i];std::sort(a+1,a+n+1);
m=read();F(i,1,m)b[i]=read();std::sort(b+1,b+m+1);;;;;;
if(tot<b[1]){pi(0);return 0;}
F(i,1,m){pre[i]=pre[i-1]+b[i];if(pre[i]>tot||b[i]>a[n]){cnt=i-1;break;}}
if(!cnt)cnt=m;
int l=1,r=cnt,ans=0;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid,1))l=mid+1,ans=mid;
else r=mid-1;
}
pi(ans);
return 0;
}
}
signed main(){return EMT::main();}

luoguP1528&2329 栅栏&切蛋糕的更多相关文章

  1. 洛谷P1528 切蛋糕 [搜索,二分答案]

    题目传送门 切蛋糕 题目描述 Facer今天买了n块蛋糕,不料被信息组中球球等好吃懒做的家伙发现了,没办法,只好浪费一点来填他们的嘴巴.他答应给每个人留一口,然后量了量每个人口的大小.Facer有把刀 ...

  2. [洛谷P1528] 切蛋糕

    洛谷题目链接:切蛋糕 题目描述 Facer今天买了n块蛋糕,不料被信息组中球球等好吃懒做的家伙发现了,没办法,只好浪费一点来填他们的嘴巴.他答应给每个人留一口,然后量了量每个人口的大小.Facer有把 ...

  3. 刷题总结——切蛋糕(ssoj)

    题目: 切蛋糕 (cake.cpp/c/pas) [问题描述] BG 有一块细长的蛋糕,长度为�. 有一些人要来BG 家里吃蛋糕, BG把蛋糕切成了若干块(整数长度),然后分给这些人.为了公平,每个人 ...

  4. LRJ入门经典-0903切蛋糕305

    原题 LRJ入门经典-0903切蛋糕305 难度级别:B: 运行时间限制:1000ms: 运行空间限制:256000KB: 代码长度限制:2000000B 试题描述 如图所示有一个矩形蛋糕,上面划分成 ...

  5. 洛谷 P1714 切蛋糕 题解

    P1714 切蛋糕 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运 ...

  6. TZOJ 3042 切蛋糕(并查集)

    描述 KK是个心灵手巧的好姑娘,她做了一个大蛋糕请她的好朋友们来品尝.这个蛋糕分成n×n个正方形小格,每个小格包含一块水果.KK要把蛋糕切成若干块,显然她不会破坏任意一个小格.无聊的某同学在她切蛋糕时 ...

  7. 切蛋糕(贪心 or 优先队列)

    链接:https://www.nowcoder.com/acm/contest/80/D来源:牛客网 最可爱的applese生日啦,他准备了许多个质量不同的蛋糕,想请一些同学来参加他的派对为他庆生,为 ...

  8. HDOJ 1722--Cake(切蛋糕问题)

    一次生日Party可能有p人或者q人参加,现准备有一个大蛋糕.问最少要将蛋糕切成多少块(每块大小不一定相等),才能使p人或者q人出席的任何一种情况,都能平均将蛋糕分食. Input 每行有两个数p和q ...

  9. 单调队列练习题解(切蛋糕&好消息,坏消息)

    单调队列的练习题解 前言: 在上一篇学习记录中,单调队列给出了几道练习题,因为这两道题的算法以及思路相差无几(几乎可以算是双倍经验quq),所以就在这里集中写一下相关的题解 前置知识: 见:队列专题( ...

随机推荐

  1. Leetcode No.108 Convert Sorted Array to Binary Search Tree(c++实现)

    1. 题目 1.1 英文题目 Given an integer array nums where the elements are sorted in ascending order, convert ...

  2. Spring学习总结(一)---谈谈对Spring IOC的理解(一:理论知识理解)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  3. 刷算法,这些api不可不知!

    大家好,我是老三,最近在刷算法,发现有些api记得不熟,所以整理了一波,如果你也在刷题,赶紧收藏吧! 集合 在刷题中,各种数据结构是我们常常用到的,例如栈实现迭代.哈希存储键值对等等,我们来看看常用集 ...

  4. 《OpenResty 最佳实践》学习开篇

    前言:对openresty学习中,收集了一些相关知识的参考网站,有兴趣的可以看看.另附网盘分享. lua菜鸟教程 openresty最佳实战 lua在线解析工具 Nginx Lua API Nginx ...

  5. vue(17)vue-route路由管理的安装与配置

    介绍 Vue Router 是 Vue.js官方的路由管理器.它和 Vue.js 的核心深度集成,让构建单页面应用变得易如反掌.包含的功能有: 嵌套的路由/视图表 模块化的.基于组件的路由配置 路由参 ...

  6. Helm Template初体验,方便管理多环境

    我最新最全的文章都在南瓜慢说 www.pkslow.com,文章更新也只在官网,欢迎大家来喝茶~~ 1 简介 Helm作为一个优秀的包管理器,这部分我们之前已经做了介绍,文章如下: 用Helm部署Ku ...

  7. Album++:分布式事务专辑-基础概念

    (一)基础概念:↓ ↓ ↓ 1.1)什么是事务 什么是事务?举个生活中的例子:你去小卖铺买东西,"一手交钱,一手交货"就是一个事务的例子,交钱和交货必 须全部成功, 事务才算成功, ...

  8. android10Binder(五)java世界的binder:AndroidFramework

    java世界的binder:AndroidFramework 目录 java世界的binder:AndroidFramework 一.前言 二.SystemServer进程的open.mmap 三.A ...

  9. FormData提交文件(十四)

    问题 在通过ajax提交表单时,表单中有Excel文件,在后台还需要读取excel文件中的数据,普通的提交方式无法实现.可以通过创建FormData对象的方式. 代码示例: 前端: 创建想要提交的fo ...

  10. odoo14在列表视图里添加自定义按钮

    static/js/xxxx.js 这里定义按钮odoo.define('add.tree.view.buttons', function (require) { "use strict&q ...