Python中的随机采样和概率分布(二)
在上一篇博文《Python中的随机采样和概率分布(一)》(链接:https://www.cnblogs.com/orion-orion/p/15647408.html)中,我们介绍了Python中最简单的随机采样函数。接下来我们更进一步,来看看如何从一个概率分布中采样,我们以几个机器学习中最常用的概率分布为例。
1. 二项(binomial)/伯努利(Bernoulli)分布
1.1 概率质量函数(pmf)
x=0,1,2,...n; \space 0\leqslant p \leqslant 1
\]
当\(n=1\)时,则取到下列极限情况,是为参数为\(p\)的二项分布:
x=0,1; \space 0\leqslant p \leqslant 1
\]
二项分布\(P(X = x;\space n, \space p)\)可以表示进行独立重复试验\(n\)次,每次有两成功和失败可能结果(分别对应概率\(p\)和\(1-p\)),共成功\(x\)次的概率。
1.2 函数原型
random.binomial(n, p, size=None)
参数:
n: int or array_like of ints 对应分布函数中的参数 n,>=0,浮点数会被截断为整形。
p: float or array_like of floats 对应分布函数参数\(p\), >=0并且<=1。
size: int or tuple of ints, optional 如果给定形状为\((m, n, k)\),那么\(m\times n \times k\)个随机样本会从中抽取。默认为None,即返回一个一个标量随机样本。
返回:
out: ndarray or scalar 从带参数的概率分布中采的随机样本,每个样本表示独立重复实验\(n\)次中成功的次数。
1.3 使用样例
设进行独立重复实验10次,每次成功概率为0.5,采样样本表示总共的成功次数(相当于扔10次硬币,正面朝上的次数)。总共采20个样本。
import numpy as np
n, p = 10, .5
s = np.random.binomial(n, p, 20)
print(s) # [4 5 6 5 4 2 4 6 7 2 4 4 2 4 4 7 6 3 5 6]
可以粗略的看到,样本几乎都在5周围上下波动。
我们来看一个有趣的例子。一家公司钻了9口井,每口井成功的概率为0.1,所有井都失败了,发生这种情况的概率是多少?
我们总共采样2000次,来看下产生0结果的概率。
s = sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
print(s) # 0.3823
可见,所有井失败的概率为0.3823,这个概率还是蛮大的。
2. 多项(multinomial)分布
2.1 概率质量函数(pmf)
\bm{x}=(x_1, x_2, ..., x_k), x_i \in \{0, ..., n\}, \space \sum_{i}{x_i}=n; \\
\bm{p}=(p_1, p_2, ..., p_k), 0\leqslant p_i \leqslant 1, \space \sum_{i}{p_i}=1
\]
当\(k=2\)时,则取到下列极限情况,是为参数为\(n\), \(p\)的二项分布:
x=0,1,2,...n; \space 0\leqslant p \leqslant 1
\]
也就是说,多项分布式二项分布的推广:仍然是独立重复实验\(n\)次,但每次不只有成功和失败两种结果,而是\(k\)种可能的结果,每种结果的概率为\(p_i\)。多项分布是一个随机向量的分布,\(\bm{x}=(x_1, x_2, ..., x_k)\)意为第\(i\)种结果出现\(x_i\)次,\(P(\bm{X} = \bm{x};\space n, \space p)\)也就表示第\(i\)种结果出现\(x_i\)次的概率。
2.2 函数原型
random.multinomial(n, pvals, size=None)
参数:
n: int 对应分布函数中的参数 n。
pvals: sequence of floats 对应分布函数参数\(\bm{p}\), 其长度等于可能的结果数\(k\),并且有\(0 \leqslant p_i \leqslant 1\)。
size: int or tuple of ints, optional 为输出形状大小,因为采出的每个样本是一个随机向量,默认最后一维会自动加上\(k\),如果给定形状为\((m, n)\),那么\(m\times n\)个维度为\(k\)的随机向量会从中抽取。默认为None,即返回一个一个\(k\)维的随机向量。
返回:
out: ndarray 从带参数的概率分布中采的随机向量,长度为可能的结果数\(k\),如果没有给定 size,则shape为 (k,)。
2.3 使用样例
设进行独立重复实验20次,每次情况的概率为1/6,采样出的随机向量表示每种情况出现次数(相当于扔20次六面骰子,点数为0, 1, 2, ..., 5出现的次数)。总共采1个样本。
s = np.random.multinomial(20, [1/6.]*6, size=1)
print(s) # [[4 2 2 3 5 4]]
当然,如果不指定size,它直接就会返回一个一维向量了
s = np.random.multinomial(20, [1/6.]*6)
print(s) # [4 1 4 3 5 3]
如果像进行多次采样,改变 size即可:
s = np.random.multinomial(20, [1/6.]*6, size=(2, 2))
print(s)
# [[[4 3 4 2 6 1]
# [5 2 1 6 3 3]]
# [[5 4 1 1 6 3]
# [2 5 2 5 4 2]]]
这个函数在论文<sup>[1]</sup>的实现代码<sup>[2]</sup>中用来设置每一个 client分得的样本数:
for cluster_id in range(n_clusters):
weights = np.random.dirichlet(alpha=alpha * np.ones(n_clients))
clients_counts[cluster_id] = np.random.multinomial(clusters_sizes[cluster_id], weights)
# 一共扔clusters_sizes[cluster_id]次筛子,该函数返回骰子落在某个client上各多少次,也就对应着该client应该分得的样本数
3.均匀(uniform)分布
3.1 概率密度函数(pdf)
\]
均匀分布可用于随机地从连续区间\([a, b)\)内进行采样。
3.2 函数原型
random.uniform(low=0.0, high=1.0, size=None)
参数:
low: float or array_like of floats, optional 对应分布函数中的下界参数 a,默认为0。
high: float or array_like of floats 对应分布函数中的下界参数 b,默认为1.0。
size: int or tuple of ints, optional 为输出形状大小,如果给定形状为\((m, n, k)\),那么\(m\times n\times k\)的样本会从中抽取。默认为None,即返回一个单一标量。
返回:
out: ndarray or scalar 从带参数的均匀分布周采的随机样本
3.3 使用样例
s = np.random.uniform(-1,0,10)
print(s)
# [-0.9479594 -0.86158902 -0.63754099 -0.0883407 -0.92845644 -0.11148294
# -0.19826197 -0.77396765 -0.26809953 -0.74734785]
4. 狄利克雷(Dirichlet)分布
4.1 概率密度函数(pdf)
\bm{x}=(x_1,x_2,...,x_k),\quad x_i > 0 , \quad \sum_{i=1}^k x_i = 1\\
\bm{\alpha} = (\alpha_1,\alpha_2,..., \alpha_k). \quad \alpha_i > 0
\]
4.2 函数原型
random.dirichlet(alpha, size=None)
参数:
alpha: sequence of floats, length k 对应分布函数中的参数向量 \(\alpha\),长度为\(k\)。
size: int or tuple of ints, optional 为输出形状大小,因为采出的每个样本是一个随机向量,默认最后一维会自动加上\(k\),如果给定形状为\((m, n)\),那么\(m\times n\)个维度为\(k\)的随机向量会从中抽取。默认为None,即返回一个一个\(k\)维的随机向量。
返回:
out: ndarray 采出的样本,大小为\((size, k)\)。
4.3 使用样例
设\(\bm{\alpha}=(10, 5, 3)\)(意味着\(k=3\)),\(size=(2, 2)\),则采出的样本为\(2\times 2\)个维度为\(k=3\)的随机向量。
s = np.random.dirichlet((10, 5, 3), size=(2, 2))
print(s)
# [[[0.82327647 0.09820451 0.07851902]
# [0.50861077 0.4503409 0.04104833]]
# [[0.31843167 0.22436547 0.45720285]
# [0.40981943 0.40349597 0.1866846 ]]]
这个函数在论文<sup>[1]</sup>的实现代码<sup>[2]</sup>中用来生成符合狄利克雷分布的权重向量
for cluster_id in range(n_clusters):
# 为每个client生成一个权重向量,文章中分布参数alpha每一维都相同
weights = np.random.dirichlet(alpha=alpha * np.ones(n_clients))
clients_counts[cluster_id] = np.random.multinomial(clusters_sizes[cluster_id], weights)
参考文献
- [1] Marfoq O, Neglia G, Bellet A, et al. Federated multi-task learning under a mixture of distributions[J]. Advances in Neural Information Processing Systems, 2021, 34.
- [2] https://github.com/omarfoq/FedEM
- [3] https://www.python.org/
- [4] https://numpy.org/
Python中的随机采样和概率分布(二)的更多相关文章
- Python中的随机采样和概率分布(一)
Python(包括其包Numpy)中包含了了许多概率算法,包括基础的随机采样以及许多经典的概率分布生成.我们这个系列介绍几个在机器学习中常用的概率函数.先来看最基础的功能--随机采样. 1. rand ...
- python中的随机模块random
random模块是 python 中为随机数所使用的模块 ```import random # 随机生成0-1范围内的随机浮点数i = random.random()print(i) # 随机生成范围 ...
- 盘点 Python 中的那些冷知识(二)
上一篇文章分享了 Python中的那些冷知识,地址在这里 盘点 Python 中的那些冷知识(一) 今天将接着分享!! 06. 默认参数最好不为可变对象 函数的参数分三种 可变参数 默认参数 关键字参 ...
- Python中的多进程与多线程(二)
在上一章中,学习了Python多进程编程的一些基本方法:使用跨平台多进程模块multiprocessing提供的Process.Pool.Queue.Lock.Pipe等类,实现子进程创建.进程池(批 ...
- 在python中实现随机选择
想从一个序列中随机抽取若干元素,或者想生成几个随机数. random 模块有大量的函数用来产生随机数和随机选择元素.比如,要想从一个序列中随机的抽取一个元素,可以使用random.choice() : ...
- python中生成随机整数(random模块)
1.从一个序列中随机选取一个元素返回: random.choice(sep) 2.用于将一个列表中的元素打乱 random.shuffle(sep) 3.在sep列表中随机选取k个 ...
- 【转】python中的一维卷积conv1d和二维卷积conv2d
转自:https://blog.csdn.net/qq_26552071/article/details/81178932 二维卷积conv2d 给定4维的输入张量和滤波器张量来进行2维的卷积计算.即 ...
- 关于python中的随机种子——random_state
random_state是一个随机种子,是在任意带有随机性的类或函数里作为参数来控制随机模式.当random_state取某一个值时,也就确定了一种规则. random_state可以用于很多函数,我 ...
- 『无为则无心』Python基础 — 42、Python中文件的读写操作(二)
目录 (5)文件对象方法(重点) 1)写方法 2)读方法 3)seek()方法 4)tell()方法 (6)关闭 (7)综合练习:读取大文件 (5)文件对象方法(重点) 1)写方法 @1.语法 对象对 ...
随机推荐
- stm32电机控制之控制两路直流电机
小车使用的电机是12v供电的直流电机,带编码器反馈,这样就可以采用闭环速度控制,这里电机使用PWM驱动,速度控制框图如下: 由以上框图可知,STM32通过定时器模块输出PWM波来控制两个直流电机的转动 ...
- 零基础入门必备的Linux命令和C语言基础
文件和目录(底部有视频资料) cd /home 进入 '/ home' 目录' cd - 返回上一级目录 cd -/- 返回上两级目录 cd 进入个人的主目录 cd ~user1 进入个人的主目录 c ...
- TCP/IP简述
一.TCP/IP简述 TCP/IP从字面异议看起来是指TCP和IP两种协议,实际上,它只是利用IP进行通信时必须用到的协议群的统称.具体的来说,IP或ICMP.TCP或UDP.Telnet或FTP.以 ...
- 从零开始的DIY智能家居 - 基于 ESP32 的智能浇水器
前言 上次 土壤湿度传感器 完成之后,就立下一个 flag 要搭建一个智慧浇水的智能场景,现在终于有时间填坑了!(o゚▽゚)o 智慧浇水场景的核心设备有三个: 检测土壤状态的:土壤湿度传感器 通过这个 ...
- [python]Robotframework+Git+jenkins实现持续集成并生成测试报告发送邮件
1.环境需求 &robotframework(不写搭建,自行百度) & git(不写安装,自行百度) &jenkins 2.安装jenkins 官网下载最新版本https:// ...
- Linux mem 2.5 Buddy 内存回收机制
文章目录 1. 简介 2. LRU 组织 2.1 LRU 链表 2.2 LRU Cache 2.3 LRU 移动操作 2.3.1 page 加入 LRU 2.3.2 其他 LRU 移动操作 3. LR ...
- centos7.2安装nginx
1 安装相关编译环境 yum install gcc-c++ yum install pcre pcre-devel yum install zlib zlib-level yum openssl o ...
- Part 21 to 22 AngularJS anchorscroll
Part 21 AngularJS anchorscroll example $anchorscroll service is used to jump to a specified element ...
- java web 在线编辑Excel -- x-spreadsheet
--- x-spreadsheet --- 文档 https://hondrytravis.com/x-spreadsheet-doc/ <%@ page language="java ...
- 容器安全产品Aqua调研
前言 近年来,随着云计算的发展,企业数字化的进程不断加快,业务纷纷开始上云,云原生的概念最近两年也是十分火热,在新业务场景下也随之产生了新的安全问题,如k8s安全.devsecops.微服务安全.Se ...