1. KNN简介

K近邻(K-Nearest Neighbor)简称KNN.它可以做分类算法,也可以做回归算法。个人经验:KNN在做分类问题时非常有效。

2. KNN算法思想

在样本空间中,我们认为两个实例在特征空间中的距离反映了它们之间的相似度,距离越近越相似。输入一个实例,看它距离些实例近,使用这些实例标签推断该实例标签(一般使用投票法做分类)。

3. KNN算法实现

# 导入包
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import joblib # 导入数据
fpath = r"..\文件\训练数据2.csv"
df = pd.read_csv(fpath)
print(df.head()) # 数据划分
x_train, x_test = train_test_split(df, train_size=0.7) # 训练集
train_x = x_train.loc[:, "nAcid":"Zagreb"]
train_y = x_train["CYP3A4"] # 测试集
text_x = x_test.loc[:, "nAcid":"Zagreb"]
test_y = x_test["CYP3A4"] # 训练knn模型
knn = KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto')
knn.fit(train_x, train_y)
joblib.dump(knn, "knn2.pkl") scores = knn.score(train_x, train_y)
print("knn训练得分:", scores) # 测试模型
label_predic = knn.predict(text_x)
acc = accuracy_score(label_predic, test_y)
print("knn测试得分:", acc) print(classification_report(test_y, label_predic)) # 网格调参
gsCv = GridSearchCV(knn,
param_grid={
'n_neighbors':list(range(1, 40, 1))
}, cv=10)
gsCv.fit(train_x, train_y) print("参数训练结束")
print("参数训练结束")
print("最好的得分:", gsCv.best_score_, "最好的参数:", gsCv.best_params_)

KNN分类的更多相关文章

  1. knn分类算法学习

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  2. KNN分类算法实现手写数字识别

    需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...

  3. KNN分类算法及python代码实现

    KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习, ...

  4. 机器学习---K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法 1.K最近邻(k-Nearest Neighbour,KNN) K最近邻(k-Nearest Neighbour,KNN)分类算法, ...

  5. (数据科学学习手札29)KNN分类的原理详解&Python与R实现

    一.简介 KNN(k-nearst neighbors,KNN)作为机器学习算法中的一种非常基本的算法,也正是因为其原理简单,被广泛应用于电影/音乐推荐等方面,即有些时候我们很难去建立确切的模型来描述 ...

  6. 在Ignite中使用k-最近邻(k-NN)分类算法

    在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...

  7. JAVA实现KNN分类

    转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/51064307 http://www.llwjy.com/blogdetail/f ...

  8. Python机器学习算法 — KNN分类

    KNN简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.KNN分类算法属于监督学习. 最简单最初级的分类器是将全部的训练 ...

  9. sklearn学习 第一篇:knn分类

    K临近分类是一种监督式的分类方法,首先根据已标记的数据对模型进行训练,然后根据模型对新的数据点进行预测,预测新数据点的标签(label),也就是该数据所属的分类. 一,kNN算法的逻辑 kNN算法的核 ...

  10. KNN分类算法

    K邻近算法.K最近邻算法.KNN算法(k-Nearest Neighbour algorithm):是数据挖掘分类技术中最简单的方法之一 KNN的工作原理 所谓K最近邻,就是k个最近的邻居的意思,说的 ...

随机推荐

  1. 美团饿了么领取外卖优惠券微信小程序的开发及上线_怎样点外卖省钱_外卖小程序的开发及上线

    都1202年了,估计没人不知道外卖了,那么就有两种人在思考两种问题: 普通人:怎么点外卖划算? 程序员:怎么通过外卖赚钱? 话不多说,为了让你们相信我有能力来讲这块内容,先给你们看一个很简单的小程序: ...

  2. Maven pom常用plugins配置说明

    maven-compiler-plugin 编译Java源码,一般只需设置编译的jdk版本 <plugin> <groupId>org.apache.maven.plugins ...

  3. Geotools核心特点以及支持数据的格式和标准

    Geotools是一个java类库,它提供了很多的标准类和方法来处理空间数据,同时这个类库是构建在OGC标准之上的,是OGC思想的一种实现.而OGC是国际标准,所以geotools将来必定会成为开源空 ...

  4. Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...

  5. UVA12267 Telephone Network

    UVA12267 Telephone Network nb tea. 注意到如果两个需要相互接通的请求 \(a,b\) 在某一层分别接了上下两个开关,那么接下来它们永远也无法接通了,因为上下两个开关是 ...

  6. [R]在dplyr函数的基础上编写函数-(3)tidyeval

    dplyr的优点很明显,数据框操作简洁,如filter(df, x == 1, y == 2, z == 3)等于df[df$x == 1 & df$y ==2 & df$z == 3 ...

  7. LVS-三种模式的配置详情

    NAT模式 实验环境 LVS1 VIP 192.168.31.66 DIP 192.168.121.128 WEB1 192.168.121.129 WEB2 192.168.121.130 安装与配 ...

  8. Unity——Js和Unity互相调用

    Unity项目可以打包成WebGl,打包后的项目文件: Build中是打包后的Js代码: Index.html是web项目的入口,里面可以调整web的自适应,也可以拿去嵌套: TemplateData ...

  9. 用原生CSS编写-怦怦跳的心

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. HDFS01 概述

    HDFS 概述 目录 HDFS 概述 HDFS的产生背景和定义 HDFS产生背景 HDFS定义 优缺点 优点 缺点 组成 NameNode DataNode Secondary NameNode(2n ...