BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ2333
题意概括
有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:
U x y: 加一条边,连接第x个节点和第y个节点
A1 x v: 将第x个节点的权值增加v
A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v
A3 v: 将所有节点的权值都增加v
F1 x: 输出第x个节点当前的权值
F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值
F3: 输出所有节点中,权值最大的节点的权值
题解
我比较懒。
这是一道坑坑的细节题。
我调了大约6个小时。
对于A3,我们只需要保存一个全局变量,每次输出的时候加上去就可以了。
对于F3,我们只需要弄一个multiset就可以了。
对于U、A1、A2、F1、F2,就是左偏树的几个基本操作。
“嘴巴上AC就是简单”
代码
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <set>
#include <vector>
using namespace std;
const int N=300005,Inf=1e8;
int n,m,addv=0;
struct Tree{
int fa,ls,rs,v,add,len;
Tree (){}
Tree (int a,int b,int c,int d,int e,int f){
fa=a,ls=b,rs=c,v=d,add=e,len=f;
}
}t[N];
multiset <int> rts;
void check0(){
t[0]=Tree(0,0,0,-Inf,0,-1);
}
int getroot(int x){
check0();
while (t[x].fa)
x=t[x].fa;
return x;
}
void del(int x){
rts.erase(rts.find(x));
}
void pushdown(int x){
check0();
int s,&add=t[x].add;
if (!t[x].add)
return;
s=t[x].ls;
if (s)
t[s].add+=add,t[s].v+=add;
s=t[x].rs;
if (s)
t[s].add+=add,t[s].v+=add;
add=0;
}
void pushadd(int x){
check0();
if (t[x].fa)
pushadd(t[x].fa);
pushdown(x);
}
int merge(int a,int b){
check0();
if (a==b)
return a;
if (a==0)
return b;
if (b==0)
return a;
if (t[a].v<t[b].v)
swap(a,b);
pushdown(a);
t[a].rs=merge(t[a].rs,b);
t[t[a].rs].fa=a;
if (t[t[a].ls].len<t[t[a].rs].len)
swap(t[a].ls,t[a].rs);
t[a].len=t[t[a].rs].len+1;
return a;
}
void change(int x,int val){
check0();
pushadd(x);
int rt=getroot(x),maxv=t[rt].v;
int fa=t[x].fa,s=merge(t[x].ls,t[x].rs);
if (fa==0&&s==0){
del(t[x].v);
t[x].v=val;
rts.insert(t[x].v);
return;
}
t[s].fa=0;
if (fa){
t[s].fa=fa;
if (t[fa].ls==x)
t[fa].ls=s;
else
t[fa].rs=s;
}
t[x]=Tree(0,0,0,val,0,0);
merge(x,getroot(s?s:fa));
int maxv_=t[getroot(x)].v;
if (maxv_!=maxv){
del(maxv);
rts.insert(maxv_);
}
}
int main(){
scanf("%d",&n);
check0();
rts.clear();
for (int i=1,v;i<=n;i++){
scanf("%d",&v);
t[i]=Tree(0,0,0,v,0,0);
rts.insert(v);
}
scanf("%d",&m);
while (m--){
char op[5],c1,c2;
int a,b;
scanf("%s",op),c1=op[0],c2=op[1];
if (c1=='U'){
scanf("%d%d",&a,&b);
a=getroot(a),b=getroot(b);
if (a==b)
continue;
if (t[a].v<t[b].v)
swap(a,b);
del(t[b].v);
merge(a,b);
}
else if (c1=='A'){
if (c2=='1')
scanf("%d%d",&a,&b),pushadd(a),change(a,t[a].v+b);
else if (c2=='2'){
scanf("%d%d",&a,&b);
a=getroot(a);
del(t[a].v);
t[a].add+=b,t[a].v+=b;
rts.insert(t[a].v);
}
else
scanf("%d",&a),addv+=a;
}
else {
if (c2=='1')
scanf("%d",&a),pushadd(a),printf("%d\n",t[a].v+addv);
else if (c2=='2')
scanf("%d",&a),printf("%d\n",t[getroot(a)].v+addv);
else
printf("%d\n",*--rts.end()+addv);
} }
return 0;
}
BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆的更多相关文章
- 【BZOJ2333】棘手的操作(左偏树,STL)
[BZOJ2333]棘手的操作(左偏树,STL) 题面 BZOJ上看把... 题解 正如这题的题号 我只能\(2333\) 神TM棘手的题目... 前面的单点/联通块操作 很显然是一个左偏树+标记 ( ...
- Luogu P3273 [SCOI2011]棘手的操作(左偏树)
什么恶心东西啊,又水又烦 两个可并堆维护即可 #include <cstdio> #include <iostream> #include <cstring> #i ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】
题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...
- [note]左偏树(可并堆)
左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...
- bzoj2809 [Apio2012]dispatching——左偏树(可并堆)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...
- [bzoj2333] [SCOI2011]棘手的操作 (可并堆)
//以后为了凑字数还是把题面搬上来吧2333 发布时间果然各种应景... Time Limit: 10 Sec Memory Limit: 128 MB Description 有N个节点,标号从1 ...
- bzoj千题计划218:bzoj2333: [SCOI2011]棘手的操作
http://www.lydsy.com/JudgeOnline/problem.php?id=2333 上次那个是线段树,再发一个左偏树 维护两种左偏树 第一种是对每个联通块维护一个左偏树 第二种是 ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
随机推荐
- js 窗口滚动到一定高度时加载数据
<script type="text/javascript"> //当窗口滚动到一定高度时 某块页面开始加载数据 window.onload = function() ...
- Varish 缓存
varish 缓存 2013年06月17日,Varnish Cache 3.0.4 发布,为目前最新版本. varish是以内存作为共享容器的:内存的大小决定了它的缓存容量.相对于主要以硬盘为存储的s ...
- CF101D Castle
传送门 首先,一定要把所有点遍历一遍,这时答案应该是\(\frac{\sum 某个点第一次被遍历的时间点}{n-1}\quad\),而且每条边只能走两次,所以每次要遍历完某棵子树才能遍历其它子树. 考 ...
- 如何利用 Jmeter 测试上传文件
在查看本文的前提,有如下几点: 会使用Jmeter,知道如何去添加http请求的sampler 会利用Jmeter完成基本的http请求或者是接口测试 知道文件上传是怎么回事 言归正传,其实文件上传我 ...
- 初识java和C的不同
学习java语言,发现C语言的语法尽管很类似,但是java的代码编写与C语言却大不相同. 一,java的类,首先接触到的是类这个思想,类中可以定义属性,可以用方法来对属性进行相应的操作: 二,jav ...
- 在css中控制图像的大小
可在CSS中利用width属性和height属性控制一个图像得到大小,就像控制其他任何盒子的大小一样. <html> <head> <title>TODO supp ...
- Handler使用中可能引发的内存泄漏
https://my.oschina.net/rengwuxian/blog/181449 http://www.jianshu.com/p/cb9b4b71a820 http://blog.csdn ...
- [转]gcc -ffunction-sections -fdata-sections -Wl,–gc-sections 参数详解
背景 有时我们的程序会定义一些暂时使用不上的功能和函数,虽然我们不使用这些功能和函数,但它们往往会浪费我们的ROM和RAM的空间.这在使用静态库时,体现的更为严重.有时,我们只使用了静态库仅有的几个功 ...
- JavaScript对象复制(一)(转载)
在JavaScript很多人复制一个对象的时候都是直接用"=",因为大家都觉得脚本语言是没有指针.引用.地址之类的,所以直接用"="就可以把一个对象复制给另外一 ...
- spring mvc常用配置
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...