causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation
先读几篇文章:
GWAS have been successful in identifying disease susceptibility loci, but it remains a challenge to pinpoint the causal variants in subsequent fine-mapping studies. A conventional fine-mapping effort starts by sequencing dozens of randomly selected samples at susceptibility loci to discover candidate variants, which are then placed on custom arrays or used in imputation algorithms to find the causal variants. We propose that one or several rare or low-frequency causal variants can hitchhike the same common tag SNP, so causal variants may not be easily unveiled by conventional efforts. Here, we first demonstrate that the true effect size and proportion of variance explained by a collection of rare causal variants can be underestimated by a common tag SNP, thereby accounting for some of the “missing heritability” in GWAS. We then describe a case-selection approach based on phasing long-range haplotypes and sequencing cases predicted to harbor causal variants. We compare this approach with conventional strategies on a simulated data set, and we demonstrate its advantages when multiple causal variants are present. We also evaluate this approach in a GWAS on hearing loss, where the most common causal variant has a minor allele frequency (MAF) of 1.3% in the general population and 8.2% in 329 cases. With our case-selection approach, it is present in 88% of the 32 selected cases (MAF = 66%), so sequencing a subset of these cases can readily reveal the causal allele. Our results suggest that thinking beyond common variants is essential in interpreting GWAS signals and identifying causal variants.
Identification of causal genes for complex traits
初步学习一些TensorFlow的基本概念
# View more python tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
# Youku video tutorial: http://i.youku.com/pythontutorial """
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf
import numpy as np # create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3 ### create tensorflow structure start ###
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
### create tensorflow structure end ### sess = tf.Session()
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init) for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
如何制作模拟的数据
Data Simulation Software for Whole-Genome Association and Other Studies in Human Genetics
A comparison of tools for the simulation of genomic next-generation sequencing data
num_cau_SNP <- 20
num_SNP <- 500
samplesize <- 20
h_squared <- 0.5 # generate genotype in Binomial distribution
pj <- runif(num_SNP, 0.01, 0.5)
xij_star <- matrix(0, samplesize, num_SNP)
#for every SNP
for (j in 1: num_SNP)
{
xij_star[,j] <- rbinom(samplesize, 2, pj[j])
} #position of causal SNPs
CauSNP <- sample(1:num_SNP, num_cau_SNP, replace = F)
Ord_CauSNP <- sort(CauSNP, decreasing = F) # generate beta, which is the best predictor
beta <- rep(0,num_SNP)
dim(beta) <- c(num_SNP,1)
# non-null betas follow standard normal distribution
beta[Ord_CauSNP] <- rnorm(num_cau_SNP,0,1) # epsilon
var_e <- sum((xij_star %*% beta)^2)
# var_e <- t(beta)%*%t(xij_star)%*%xij_star%*%beta/samplesize*(1-h_squared)/h_squared
e <- rnorm(samplesize, 0,sqrt(var_e))
dim(e) <- c(samplesize, 1) # generate phenotype
pheno <- xij_star %*% beta + e # scale(genotype matrix)
待续~
causal snps | causal variants | tensorflow | 神经网络实战 | Data Simulation的更多相关文章
- Reading | 《TensorFlow:实战Google深度学习框架》
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...
- 【书评】【不推荐】《TensorFlow:实战Google深度学习框架》(第2版)
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 这本书我老老实实从头到尾看了一遍(实际上是看到第9章,刚看完,后面的实在看不下去了,但还是会坚持看的),所有的代码 ...
- FaceRank,最有趣的 TensorFlow 入门实战项目
FaceRank,最有趣的 TensorFlow 入门实战项目 TensorFlow 从观望到入门! https://github.com/fendouai/FaceRank 最有趣? 机器学习是不是 ...
- 学习TF:《TensorFlow机器学习实战指南》中文PDF+英文PDF+代码
从实战角度系统讲解TensorFlow基本概念及各种应用实践.真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带你由浅入深系统掌握TensorFlow机器学习算法及其实现. <Tensor ...
- TensorFlow神经网络集成方案
TensorFlow神经网络集成方案 创造张力流create_tensorflow_neuropod 将TensorFlow模型打包为neuropod包. create_tensorflow_neur ...
- TensorFlow(实战深度学习框架)----深层神经网络(第四章)
深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最 ...
- 【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐
原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网 ...
- 学习笔记TF055:TensorFlow神经网络简单实现一元二次函数
TensorFlow运行方式.加载数据.定义超参数,构建网络,训练模型,评估模型.预测. 构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层.隐藏层.输出层.Tensor ...
- TensorFlow机器学习实战指南之第二章
一.计算图中的操作 在这个例子中,我们将结合前面所学的知识,传入一个列表到计算图中的操作,并打印返回值: 声明张量和占位符.这里,创建一个numpy数组,传入计算图操作: import tensorf ...
随机推荐
- smsService接口(dubbo接口)
package com.lakala.crosspay.jmeter.client.integration; import com.lakala.crosspay.sms.api.SmsService ...
- ant安装
- uniGUI试用笔记(十)
今天用LoadRunner对uniGUI的Standalone模式的程序进行了一次压力测试,程序采用三层模式,将应用服务器与Web服务器分离,由于条件限制,数据库.应用服务和Web服务都部署在同一条云 ...
- tp剩余未验证内容-3
为什么有时候会 出现 "上传文件保存错误"? public function save($file, $replace=true){ /* 移动文件 */ if (!move_up ...
- cannot open window service on computer '.' in window application
1.配置错误,需要检查对应的windows service的exe文件所在文件夹下的log 2.在命令行通过Start-Service启动,需要有管理员权限.
- 【问题解决:连接异常】 java.lang.ClassCastException: java.math.BigInteger cannot be cast to java.lang.Long
问题描述: MySQL更新到8.0.11之后连接数据库时会报出错误 Your login attempt was not successful, try again.Reason: Could not ...
- (转载)C# winform 在一个窗体中如何设置另一个窗体的TextBox的值
方法1:修改控件的访问修饰符.(不建议使用此法) public System.Windows.Forms.TextBox textBox1; 在调用时就能直接访问 Form1 frm = new Fo ...
- Dispose in c#
在标准的Dispose模式中,真正的IDisposable接口的Dispose方法并没有做实际的清理工作,它其实是调用了下面的这个带bool参数且受保护的的虚方法: protected virtual ...
- 运行python脚本后台执行
最近搞到了一台服务器,挂一个脚本刷刷河畔在线时间.脚本随便写了两下,能跑到什么时候就随缘了 https://blog.csdn.net/philosophyatmath/article/details ...
- Spring-JDBC依赖
<dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</a ...