[TOC]
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

极大似然估计

一、最大似然原理

二、极大似然估计

极大似然估计是建立在最大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计。

简而言之,极大似然估计的目的是利用已知的样本结果,反推最有可能导致这样结果的参数值。

三、似然函数

假设一个样本集$D$的$n$个样本都是独立同分布的,并且该样本集为

\[
D={x_1,x_2,\ldots,x_n}
\]

似然函数(likelihood function):联合概率密度函数$p(D|\theta)\(称为相对于\){x_1,x_2,\ldots,x_n}\(的\)\theta$的似然函数。

\[
l(\theta) = p(D|\theta) = p(x_1,x_2,\ldots,x_n|\theta) = \prod_{i=1}^n p(x_i|\theta)
\]

四、极大似然函数估计值

如果$\hat{\theta}\(是\)\theta$参数空间中能使似然函数$l(\theta)\(最大的\)\theta$值,则$\hat{\theta}\(是最可能的参数值,那么\)\hat{\theta}\(是\)\theta$的最大似然估计量,记作

\[
\hat{\theta} = d(x_1,x_2,\ldots,x_n) = d(D)
\]

并且$\hat{\theta}(x_1,x_2,\ldots,x_n)$称作极大似然函数估计值。

五、求解极大似然函数

给出求解最大$\theta$值的公式

\[
\hat{\theta} = arg \underbrace{max}_\theta l(\theta) = arg \underbrace{max}_\theta \prod_{i=1}^n p(x_i|\theta)
\]

为了方便计算,定义对数似然函数$H(\theta)$,即对似然函数求对数

\[
H(\theta) = \ln{l(\theta)}
\]

因此求最大$\theta$值的公式变成了

\[
\hat{\theta} = arg \underbrace{max}_\theta H(\theta) = arg \underbrace{max}_\theta \ln{l(\theta)} = arg \underbrace{max}_\theta \prod_{i=1}^n \ln{p(x_i|\theta)}
\]

并且可以发现公式中只有一个变量$\theta$

5.1 未知参数只有一个

如果$\theta$为标量,在似然函数满足连续、可微的情况下,则极大似然估计量是下面微分方程的解

\[
{\frac{dH(\theta)}{d\theta}} = {\frac{d\ln{l(\theta)}}{d\theta}} = 0
\]

5.2 位置参数有多个

如果$\theta$为$k$维向量,可以把$\theta$记作$\theta = [\theta_1,\theta_2,\ldots,\theta_k]^T$,对$\theta_1,\theta_2,\ldots,\theta_k$求梯度,可得

\[
\Delta_\theta=[{\frac{\partial}{\partial_{\theta_1}}},{\frac{\partial}{\partial_{\theta_2}}},\cdots,{\frac{\partial}{\partial_{\theta_s}}}]^T
\]

如果似然函数满足连续、可导的情况下,则最大似然估计量就是如下方程的解:

\[
\Delta_\theta{H(\theta)} = \Delta_\theta\ln{l(\theta)} = \sum_{i=1}^n \Delta_\theta \ln(p(x_i|\theta)) = 0
\]

5.3 总结

方程的解只是一个估计值,只有在样本趋于无限多的时候,才会逐渐接近真实值。

B-概率论-极大似然估计的更多相关文章

  1. 【ML数学知识】极大似然估计

    它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...

  2. LR为什么用极大似然估计,损失函数为什么是log损失函数(交叉熵)

    首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可 ...

  3. 极大似然估计MLE 极大后验概率估计MAP

    https://www.cnblogs.com/sylvanas2012/p/5058065.html 写的贼好 http://www.cnblogs.com/washa/p/3222109.html ...

  4. [白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

    [白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找 ...

  5. 极大既然估计和高斯分布推导最小二乘、LASSO、Ridge回归

    最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function ...

  6. 参数估计:最大似然估计MLE

    http://blog.csdn.net/pipisorry/article/details/51461997 最大似然估计MLE 顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因 ...

  7. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  8. ML 徒手系列 最大似然估计

    1.最大似然估计数学定义: 假设总体分布为f(x,θ),X1,X2...Xn为总体采样得到的样本.其中X1,X2...Xn独立同分布,可求得样本的联合概率密度函数为: 其中θ是需要求得的未知量,xi是 ...

  9. 又看了一次EM 算法,还有高斯混合模型,最大似然估计

    先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://w ...

随机推荐

  1. Dinic算法学习

    转自 此文虽为转载,但博主的网络流就是从这开始的,认为写的不错 网络流基本概念 什么是网络流 在一个有向图上选择一个源点,一个汇点,每一条边上都有一个流量上限(以下称为容量),即经过这条边的流量不能超 ...

  2. spring boot使用常规发送邮件

    spring boot使用常规发送邮件 1.pom.xml文件依赖: <!-- javax.mail begin--> <dependency> <groupId> ...

  3. (2)RapidJson的详解及使用

        本节主要介绍RapidJson是如何使用的.   (1)RapidJson是什么 RapidJson是一个跨平台的c++的json的解析器和生成器: 相比较jsoncpp库,RapidJson ...

  4. 【干货推荐】Android开发该学习哪些东西?

    开篇: 本人也是众多Android开发道路上行走的一员,听了不少大神的知乎live,自己也看了不少书,也和不少前辈交流过,所以在这里分享一下Android开发应该学习的书籍以及知识,当然,也包括一些方 ...

  5. 剖析nsq消息队列(二) 去中心化代码源码解析

    在上一篇帖子剖析nsq消息队列(一) 简介及去中心化实现原理中,我介绍了nsq的两种使用方式,一种是直接连接,还有一种是通过nslookup来实现去中心化的方式使用,并大概说了一下实现原理,没有什么难 ...

  6. .Net基础篇_学习笔记_第四天_关系运算符和逻辑运算符

    1.关系运算符 包含:>   <   <=  >=   ==  != 以及bool类型中的true和false. 2.逻辑运算符 与 && 或 || 非 ! 注 ...

  7. Java I/O系统学习四:标准IO

    几乎所有学习Java的同学写的第一个程序都是hello world,使用的也都是System.out.println()这条语句来输出"hello world",我也不例外,当初学 ...

  8. java8 Date/Time API 新的日期处理工具

    接上篇文章 java8 新特性 由于上篇过于庞大,使得重点不够清晰,本篇单独拿出 java8 的 Date/Time api 进行说明,新的日期时间工具全部都在 java.time 及其子包中. 新 ...

  9. git使用和操作

    git提交日志的规范 为了更规范的开发,特别是团队协同开发,对于代码托管工具的提交上都会有要求的. 作为开发者,我们一定要注重提交日志的规范性,我们要对自己写的代码负责.提交日志规范很多,最近看到了一 ...

  10. 软件测试的分类&软件测试生命周期

    软件测试的分类: 按测试执行阶段:单元测试.集成测试.系统测试.验收测试.(正式验收测试,Alpha 测试-内侧,Beta 测试-公测) 按测试技术分类:黑盒测试.白盒测试.灰盒测试 按测试对象是否运 ...