A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6784    Accepted Submission(s): 5389

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 
Author
xhd

扩展欧几里得的模板题,要记住:

x=y1;

y=x1-a/b*y1。

这道题的推导过程如下:

1.因为A%B==0,所以令A/B=x,即A=Bx。又因为n=A%m,所以m*y+n=A。

由上面可推导出Bx-my=n。

2.由扩展欧几里得算法可以算出B*x1+m*y1=1的根,等式两边同时乘上n可以变形为B*(x1*n)-m*(-n*y1)=n。

所以x=n*x1。到这里我们只需要通过扩欧算出x1,答案即为(x1*n)%m。

3.最后要注意的一点,扩展欧几里得算法算出的x1可能为负数,这显然是不成立的。又因为

x=x1+b*t;

y=y1-a*t;

所以x1的值可以写成(x%m+m)%m。这样的话负数也转成了正数,就可以输出答案啦!

 
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int m = ;
void exgcd(int a,int b,int &x,int &y){
if(b == ){
x = ;
y = ;
return;
}
exgcd(b,a%b,x,y);
int t = y;
y = x - a/b*y;
x = t;
}
int main(){
int T;
cin >> T;
while(T--){
int n,b,x,y;
cin >> n >> b;
exgcd(b,m,x,y);
x = (x%m+m)%m;//防止x为负数
cout << x*n%m << endl;
}
return ;
}

hdu1576 扩展欧几里德 A/B的更多相关文章

  1. hdu2669与hdu1576(扩展欧几里德)

    模板: int Extend_Euclid(int a, int b, int &x, int &y){         if(b == 0){             x = 1; ...

  2. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  3. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  4. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  5. 51nod 1352 扩展欧几里德

    给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...

  6. CF 7C. Line(扩展欧几里德)

    题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...

  7. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  8. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  9. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

随机推荐

  1. Jenkins 配置 SpringBoot 自动构建部署

    服务器版本 Linux version 3.10.0-957.12.1.el7.x86_64 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8 ...

  2. 5、数组的复制(test2.java、test3.java)

    对于数组的复制,在最开始的时候最容易犯的一个错误,那就是自己认为的申请一个数组,然后将已存在的数组赋值到新申请数组名上,这样是错误的,这样仅仅是将数组的地址复制了过去,并不是,将数组内的元素拷贝过去, ...

  3. mac下使用zerobrane调试cocos2dx的lua

    环境:MacOSx 10.9.2, Lua 5.1.4, luaSocket 2.0.2, xcode5.0.2 所需文件 luasocket-2.0.2.zip,ZeroBraneStudioEdu ...

  4. 关于JSON解析的问题(js序列化及反序列化)

    我们都知道,现在的开发模式都是前后端分离的,后台返回数据给前端,前端负责数据交互并渲染到页面,所以我们需要从后端接口上获取数据显示到页面上.在接受服务器端数据数据时,一般是字符串.这时,就需要用到JS ...

  5. python面试总结1(基础章节)

    python语言基础 语言特点 python是静态还是动态类型?是强类型还是弱类型 动态强类型语言 动态还是静态指的是编译期还是运作期确定类型 强类型指的是不会发生隐式类型转换 python作为后端语 ...

  6. PL/SQL 调用 JAVA代码

    1.直接在 SQL Developer中写入代码 create or replace and compile java source named "HelloWorld" as p ...

  7. 网页如何设置favicon.ico

    1.首先制作ico图,并命名favicon.ico 2.将文件放在项目的根目录下

  8. 前端小知识-js

    一.对象冒充 function student(name,age){ this.name = name; this.age = age; this.show = function(){ console ...

  9. 朴素贝叶斯python代码实现(西瓜书)

    朴素贝叶斯python代码实现(西瓜书) 摘要: 朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候, 使用起来非常的方便.原理简单,训练效率高,拟合效果 ...

  10. SecureCRT软件的个性化设置

    工欲善其事,必先利其器.如果我们能花点时间把每天工作都要用到的SecureCRT软件设置的舒服一些,日后工作起来也是会心情愉悦.事半功倍的. 1.日志文件设置 2.窗口配色和关键字高亮 3.效果展示 ...