说明:本文只是通过自己的已学知识对股票数据进行了一个简单的量化分析,只考虑了收盘情况,真实的量化交易中仅仅考虑收盘情况是不够的,还有很多的复杂因素,而且仅仅三年数据是不足以来指导真实的股票交易的,因此本文只是作为一个简单的python练手项目。

一、分析目的

利用预先设定的策略,通过对股票交易的历史数据进行回测,验证该策略是否能指导股票交易。

二、数据处理

1、数据集描述

数据集来源:https://www.nasdaq.com/symbol/baba/historical

数据集简介:此数据集来源于Nasdaq网站,本文获取的是2016/04/15——2019/04/15三年的数据。

列名称理解:

原数据表的字段列名非常规范,无需进行重命名,以下是每个列名称的理解:

date:日期

close:收盘价格

volumn:成交量

open:开盘价格

high:日最高价格

low:日最低价格

本次只是简单针对收盘价格进行了分析。

2、 数据清洗

该数据集比较规范,没有重复值以及它异常值需要处理。

3、数据导入

# 加载库
import numpy as np
import pandas as pd
# 加载数据(本次只用到了日期和收盘价)
df = pd.read_csv('E:/相关文件夹/BABA_stock.csv',index_col = 'date',usecols = [0,1])
df.head()

 

三、数据分析

# 将索引转化为日期索引
df.index = pd.to_datetime(df.index)
# df.index = pd.DatetimeIndex(df.index.str.strip("'"))
df.index
# 按索引排序
df.sort_index(inplace = True )
df.head()

买卖策略:前一天低于60日平均线第二天高于60日平均线时买入,前一天高于60日平均线第二天低于60日平均线时卖出。

1、计算60日移动平均值

ma60 = df.rolling(60).mean().dropna()
ma60

2、找到值从False变为True时买入,True变为False时卖出

ma60_model = df['close'] - ma60['close'] >0
ma60_model

3、找出买点和卖点

# 自定义方法找出买点和卖点
def get_deal_date(w,is_buy = True):
if is_buy == True:
return True if w[0] == False and w[1] == True else False
else:
return True if w[0] == True and w[1] == False else False
# raw=False没有的话会有警告信息
# 如果删除Na值,会有缺失,所以这里用0填充,转换为bool值方便后面取值
se_buy = ma60_model.rolling(2).apply(get_deal_date,raw = False).fillna(0).astype('bool')
se_buy
# apply的args接受数组或者字典给自定义函数传参
se_sale = ma60_model.rolling(2).apply(get_deal_date,raw = False,args = [False]).fillna(0).astype('bool')
se_sale # 使用布尔索引找出买点和卖点
buy_info = df[se_buy.values]
sale_info = df[se_sale.values]
buy_info
sale_info

4、计算获利情况(每股交易获利情况)

# 转换为数值索引:需要将索引进行处理后再进行运算
no_index_buy_info = buy_info.reset_index(drop = True)
no_index_sale_info = sale_info.reset_index(drop = True)
print(no_index_buy_info.head())
print(no_index_sale_info.head())
# 获利情况
profit = no_index_sale_info - no_index_buy_info
# 最后一组数据中没有卖出点,可能会出现null值
profit.dropna() # 计算总体利润情况
profit.describe()
# 总共赚了多少钱
profit.sum()

  

图a                                    图b

close    57.66
dtype: float64

从图a可以看出每次的买入和卖出有盈有亏,从图b的整体情况来看,总共交易12次,亏损最多的时候是8.61美元,平均每次获利4.8,最多的一次赚了75.5美元;通过对

所有交易进行汇总分析,得出了获利总额为57.66美元,总体来说是盈利的。

5、1w美元的最终盈利情况

策略:将每次卖出的钱投入到下一次进行买入

all_money = 10000
remain = all_money
# 如果加上每次交易金额的万分之三手续费
fee = 0.0003
# 由于最后一次未出现卖点,所以交易次数需要用买入次数减一
for i in range(len(no_index_buy_info)-1):
buy_count = remain/no_index_buy_info.iloc[i]
remain = buy_count * no_index_sale_info.iloc[i]*(1-fee)
print(remain)
close    12413.412104
Name: 0, dtype: float64
close 22301.278558
dtype: float64
close 22412.294488
dtype: float64
close 22024.926199
dtype: float64
close 21439.23349
dtype: float64
close 20885.390796
dtype: float64
close 20576.028522
dtype: float64
close 19640.163023
dtype: float64
close 19232.001776
dtype: float64
close 18857.206606
dtype: float64
close 18595.722503
dtype: float64
close 18044.391215
dtype: float64

从以上结果可以看出:三年获得的利润为8044.39美元,年化大概26%左右,收益总体来说还是很不错的,该策略可以放到其他周期或者其他股票里进行分析,如果都可以获利,说明该策略在指导股票交易上是有效的。

 

Python实战——基于股票的金融数据量化分析的更多相关文章

  1. python金融与量化分析------Matplotlib(绘图和可视化)

    -----------------------------------------------------------Matplotlib:绘图和可视化------------------------ ...

  2. ORACLE+PYTHON实战:复制A表数据到B表

    最近在学习python ,看到了pythod的oracle,不仅可以一次fetch多条,也可以一次insert多条,想写一个复制A表数据到B表的程序来看看实际效率能不能提高.写完发现,非常惊艳!效率提 ...

  3. python金融与量化分析----Jupyter Notebook使用

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  4. python之金融与量化分析

      一.金融 二.ipython 基础功能 ipython 快捷键

  5. 利用python进行泰坦尼克生存预测——数据探索分析

    最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每 ...

  6. Python 数据分析中金融数据的来源库和简单操作

    目录 金融数据 pandas-datareader TuShare 金融学图表 案例 金融数据 数据分析离不开数据的获取,这里介绍几种常用的获取金融方面数据的方法. pandas-datareader ...

  7. 金融量化分析-python量化分析系列之---使用python获取股票历史数据和实时分笔数据

    财经数据接口包tushare的使用(一) Tushare是一款开源免费的金融数据接口包,可以用于获取股票的历史数据.年度季度报表数据.实时分笔数据.历史分笔数据,本文对tushare的用法,已经存在的 ...

  8. 向大家介绍我的新书:《基于股票大数据分析的Python入门实战》

    我在公司里做了一段时间Python数据分析和机器学习的工作后,就尝试着写一本Python数据分析方面的书.正好去年有段时间股票题材比较火,就在清华出版社夏老师指导下构思了这本书.在这段特殊时期内,夏老 ...

  9. 基于股票大数据分析的Python入门实战(视频教学版)的精彩插图汇总

    在我写的这本书,<基于股票大数据分析的Python入门实战(视频教学版)>里,用能吸引人的股票案例,带领大家入门Python的语法,数据分析和机器学习. 京东链接是这个:https://i ...

随机推荐

  1. zabbix主动模式无法获取网卡和文件系统数据

    zabbix版本为4.2,根据网上教程将zabbixagent设置成主动模式后,将templates中各Items的type改为Zabbix agent (active),同时将Discovery r ...

  2. ansible部署Tomcat

    首先要准备的环境就是免密登录 这是要在ansible-playbook中所写的内容---- hosts: tomcat tasks:   - name: 关闭防火墙     service: name ...

  3. Codeforces Round #590 (Div. 3)

    A. Equalize Prices Again 题目链接:https://codeforces.com/contest/1234/problem/A 题意:给你 n 个数 , 你需要改变这些数使得这 ...

  4. 线上服务器CPU彪高的调试方式

    原文内容来自于LZ(楼主)的印象笔记,如出现排版异常或图片丢失等问题,可查看当前链接:https://app.yinxiang.com/shard/s17/nl/19391737/2fee7b91-f ...

  5. [追热点]了解 Cloud Native 云原生

    起源和发展 Pivotal 是云原生应用的提出者,并推出了 Pivotal Cloud Foundry 云原生应用平台和 Spring 开源 Java 开发框架,成为云原生应用架构中先驱者和探路者. ...

  6. SpringMVC框架之第一篇

    2.SpringMVC介绍 2.1.SpringMVC是什么 SpringMVC是Spring组织下的一个表现层框架.和Struts2一样.它是Spring框架组织下的一部分.我们可以从Spring的 ...

  7. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  8. webpack生成的css文件background-image url图片无法加载

    之前在使用webpack3构建基于less预处理的项目时,在对指定的元素使用background-image: url(xxx)来设置背景图片时,本地开发是ok的,但是在项目编译产出后背景图片就找不到 ...

  9. 从无到有通过IDEA搭建SpringBoot项目

    本人第一次写博客希望记录当下,努力成为IT界中的清流,写的不好多多包涵. SpringBoot是由Pivotal团队在2013年开始研发.2014年4月发布第一个版本的全新开源的轻量级框架.它基于Sp ...

  10. Hyperledger Fabric私有数据

    官方文档:点这里 1简介 在同一个通道中,允许某一组织在对同一通道内其他组织保持部分的数据私有.也就是说有一部分被标识为私有的数据只能具有权限的组织查看和操作,而其余组织不具备查看和操作私有数据的权限 ...