Gated CNN 阅读笔记
之前看过TCN,稍微了解了一下语言模型,这篇论文也是对语言模型建模,但是由于对语言模型了解不深,一些常用数据处理方法,训练损失的计算包括残差都没有系统的看过,只是参考网上代码对论文做了粗浅的复现。开学以来通过看的几篇论文及复现基本掌握了tensorflow的基本使用,了解了“数据处理-模型构建-训练“的处理问题基本流程,但是随着看论文的增多发现理论基础严重薄弱,以后应该会一边补理论一边看论文...
一.论文简介
来源:没...没找到
题目:Language Modeling with Gated Convolutional Networks
原文链接:https://arxiv.org/pdf/1612.08083.pdf
参考代码:anantzoid/Language-Modeling-GatedCNN
之前语言模型的主流方法都是基于RNN,本篇论文提出了一种新颖的门控机制,结合CNN网络应用到语言模型。该网络包含多层,与经典语法形式相似,能分层次地分析输入,构建了增加粒度的句法树结构。与RNN逐个处理输入序列不同,CNN可以实现并行计算,大大加快训练速度。并且分层结构也简化了学习,与RNN的链结构相比,非线性计算数量减少,从而减轻了消失梯度问题。
二.网络架构

所谓的门限卷积,其核心在于为卷积的激活值添加一个门限开关,来决定其有多大的概率传到下一层去。下面一步步对上图进行解析。
1.将单词embedding到连续空间,即上图中的第二部分Lookup Table。这样,单词序列就能表现为矩阵了。
2.然后是卷积操作,与普通卷积不同,门限卷积在这里分为两部分,一部分是卷积激活值,即B,该处与普通卷积的不同在于没有用Tanh,而是直接线性,但会经过一个sigmoid运算符。另一部分是门限值,即A,A也是直接线性得到。在做卷积的时候,需要不让第i个输出值看到i以后的输入值。这是由语言模型的特性决定的,需要用i之前的信息来预测i。为了达到这样的效果,需要将输入层偏移k - 1个单位,其中k是卷积的宽度,偏移后开头空缺的部分就用0进行padding。
3.接下来是门限单元,A和sigmoid(B)进行element-wise的相乘,得到卷积后的结果。卷积单元和门限单元加起来形成一个卷积层(作者在具体实现里将卷积和门控单元放在一起,形成residual block)。

注意,LSTM中有input门和forget门两种,这两种缺一则会导致有些信息的缺失。而卷积中,作者经过实验,提出不需要forget gate。此外,作者对两种门控机制GTU和GLU做了比较:
GTU
GLU
作者从梯度的角度对两种门控单元进行了分析,发现GTU会衰减的比较快,因为其梯度公式中包含两个衰减项。而GLU只有一个衰减项,可以较好地减轻梯度弥散。
4.经过多个这样的卷积层之后,再将其输入到softmax中,得到最后的预测。作者提出,在最后的softmax层,普通的softmax会因为词表巨大而非常低效。因而选用adaptive softmax。adaptive softmax可以为高频词分配更多的空间而给低频次分配比较少的空间。
三.实验
使用Google Billion Word和WikiText-103两种数据集,将perplexity作为衡量结果。使用Nesterov’s momentum算法来训练,momentum设为0.99,作者还使用了weight normalization和gradient clipping来加速收敛。
实验结果如下:

性能测试:

作者使用Throughput和Responsiveness作为衡量标准,Throughput是指在并行化条件下最大输出,Responsiveness是指序列化的处理输入。由表可知,CNN本身的处理速度非常快。而LSTM在并行化后也能拥有很高的速度。究其原因,是在cuDNN中对LSTM有特别的优化,而对1-D convolution却没有。但即便如此,CNN仍然完胜。
门限测试:

非线性模型测试:

context size测试:

训练测试:

四.总结
这篇文章提出了一种基于卷积神经网络的新颖的门限机制,将其应用到语言模型。与循环神经网络相比,卷积神经网络局部性的特点使得其可以在词序列中进行并行训练,提高了处理的速度,并且分层结构也简化了学习,与RNN的链结构相比,非线性计算数量减少,从而减轻了消失梯度问题,加快了模型的收敛速度。
问题:
主要是针对参考代码的实现有一些疑问。
论文中作者提到,在做卷积的时候,需要不让第i个输出值看到i以后的输入值。这是由语言模型的特性决定的,需要用i之前的信息来预测i。为了达到这样的效果,需要将输入层偏移k - 1个单位,其中k是卷积的宽度,偏移后开头空缺的部分就用0进行padding。代码作者实现的时候在句子开头增加了(k/2)个padding,然后在卷积的时候采用“SAME”模式,这与原文中处理方式不同,并且我认为这样处理是有问题的,这个问题这里有提到,后面对残差部分的修改比较符合我的认知。其次对于代码作者对数据进行分割的方法,在embedding层加mask的方法都不是很理解,不知道针对语言模型问题,数据处理和卷积一般都是怎么操作的,以后慢慢熟悉...
参考:
Language Modeling with Gated Convolutional Networks(句子建模之门控CNN)--模型简介篇
《Language Modeling with Gated Convolutional Networks》阅读笔记
Language Modeling with Gated Convolutional Networks
Gated CNN 阅读笔记的更多相关文章
- 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...
- 卷积神经网络(CNN)学习笔记1:基础入门
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01 | In Machine Learning | 9 Comments | 14935 Vie ...
- Keras 文档阅读笔记(不定期更新)
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...
- 论文阅读笔记“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 ...
- 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...
- 论文阅读笔记(十二)【CVPR2018】:Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成 ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- 阅读笔记 1 火球 UML大战需求分析
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本 <火球 UML大战需求分析>,首先 ...
- [阅读笔记]Software optimization resources
http://www.agner.org/optimize/#manuals 阅读笔记Optimizing software in C++ 7. The efficiency of differe ...
随机推荐
- 记支付宝接口对接,涉及到提取证书SN号的解决方案
支付宝针对.NET SDK并未封装有提取证书SN序列号的方法,仅针对Java平台才有对应的方法(赤裸裸的歧视啊~~) 要想在提取这个SN序列号有两种方案: 1. 直接用Java SDK包来提取SN 2 ...
- 那些年伴我一起成长的SAP装备
今天这篇文章无关技术,我们来聊聊SAP装备,即打上了SAP logo的那些物品. 但凡在SAP圈子工作过一段时间的从业者们,手上或多或少都拥有一些此类装备.Jerry当然也不例外,这些装备无论物品本身 ...
- 快速搭建Kerberos服务端及入门使用
快速搭建Kerberos服务端及入门使用 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. Kerberos是一种网络身份验证协议.它旨在通过使用秘密密钥加密为客户端/服务器应用程序提 ...
- PHP添加php-java-brideg模块(ubuntu环境)
1.下载php-java-bridge 下载地址:https://sourceforge.net/projects/php-java-bridge/files/Binary%20package/php ...
- MySQL 空事务
问题描述; 研发同事反应MySQL数据库有锁,检查innodb_trx时,发现有很多长时间未结束的空事务. 这些事务的trx_mysql_thread_id都为0,因此不能通过kill ...
- unity 之协程返回值
yield return null; // 下一帧再执行后续代码yield return 6;//(任意数字) 下一帧再执行后续代码yield break; //直接结束该协程的后续操作yield r ...
- Navicat连接MySQL数据库出现 ERROR 2059 (HY000): Authentication plugin 'caching_sha2_password' cannot be loaded
装了mysql 8之后因为mysql8采用了新的加密方式,很多软件还不支持, 解决方法如下: 1. 管理员权限运行命令提示符,登陆MySQL mysql -u root -p 2. 修改账户密码加密规 ...
- 《奋斗吧!菜鸟》 第九次作业:Beta冲刺 Scrum meeting 3
项目 内容 这个作业属于哪个课程 任课教师链接 作业要求 https://www.cnblogs.com/nwnu-daizh/p/11012922.html 团队名称 奋斗吧!菜鸟 作业学习目标 掌 ...
- xss获取cookie源码附利用代码
保存为cookie.asp <% testfile=Server.MapPath("cookies.txt") msg=Request("msg") se ...
- 结构型模式(七) 代理模式(Proxy)
一.动机(Motivate) 在面向对象系统中,有些对象由于某种原因(比如对象创建的开销很大,或者某些操作需要安全控制,或者需要进程外的访问等),直接访问会给使用者.或者系统结构带来很多麻烦.如何在不 ...