【题解】Paid Roads [SP3953] [Poj3411]

传送门:\(\text{Paid}\) \(\text{Roads}\) \(\text{[SP3953]}\) \(\text{[Poj3411]}\)

【题目描述】

给出一张 \(n\) 个点 \(m\) 条边的有向图。对于每条边 \((x,y)\),如果之前经过 \(z\) 点,那么费用为 \(p\),否则为 \(r\)。求 \(1\) 到 \(n\) 的最小费用。如果无法到达则输出 “ \(\text{impossible}\) ”。

【样例】

样例输入:
4 5
1 2 1 10 10
2 3 1 30 50
3 4 3 80 80
2 1 2 10 10
1 3 2 10 50 样例输出:
110

【数据范围】

\(100 \%:\) \(1 \leqslant n,m \leqslant 10,\) \(0 \leqslant p_i,r_i \leqslant 100\)


【分析】

由于边的费用涉及到了是否经过某个点, 而且\(n\) 较小,因此可以考虑状压。

将每个点 \(i\) 分为 \(2^n-1\) 层,第 \(j\) 层表示当前在第 \(i\) 个点,状态为 \(j\)(二进制第 \(k\) 位为 \(1\) 就表示已经经过了点 \(k\),\(0\) 表示还未经过)的状态,跑一遍 \(\text{dijkstra}\) 或者 \(\text{SPFA}\) 即可。

也可以开一个二维的 \(\text{dis}\) 数组,\(dis[i][j]\) 表示当前在点 \(i\),状态为 \(j\) 的最短路,在最短路算法里面按照 \(j\) 分类更新 \(dis\)。

另外注意一下坑点:每个点可经过多次

个人喜欢把所有的点全部建好,直接跑裸的最短路(就像写网络流那样)。

第二种写法代码就不放了。

【Code】

#include<algorithm>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register int
using namespace std;
const int N=10300,M=2e4+3,inf=2e9;
int n,m,x,y,z,p,r,o,V,ans,dis[N],pan[N],head[N];
struct QWQ{int x,d;inline bool operator<(QWQ O)const{return d>O.d;}};
struct QAQ{int w,to,next;}a[M<<1];priority_queue<QWQ>Q;
inline void add(Re x,Re y,Re z){a[++o].w=z,a[o].to=y,a[o].next=head[x],head[x]=o;}
inline void in(Re &x){
Re f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
inline void dijkstra(Re st){
for(Re i=0;i<=n*V;++i)dis[i]=inf,pan[i]=0;//注意初始化时应扫描到n*V
Q.push((QWQ){st,dis[st]=0});
while(!Q.empty()){
Re x=Q.top().x;Q.pop();
if(pan[x])continue;
pan[x]=1;
for(Re i=head[x],to;i;i=a[i].next)
if(dis[to=a[i].to]>dis[x]+a[i].w)
Q.push((QWQ){to,dis[to]=dis[x]+a[i].w});
}
}
inline int Poi(Re i,Re j){return j+(i-1)*V;}//当前在点i状态为j
int main(){
// freopen("123.txt","r",stdin);
in(n),in(m),V=(1<<n)-1;
while(m--){
in(x),in(y),in(z),in(p),in(r);
for(Re j=0;j<=V;++j)
if(j&(1<<x-1))//如果j中包含了x,由于点可经过多次,所以不必判断y的情况
if(j&(1<<z-1))add(Poi(x,j),Poi(y,j|(1<<y-1)),p);//已经经过了z
else add(Poi(x,j),Poi(y,j|(1<<y-1)),r);//还没有经过z
}
dijkstra(Poi(1,1));ans=inf;//出发点为:只经过了1的状态,当前在点1
for(Re j=0;j<=V;++j)ans=min(ans,dis[Poi(n,j)]);
if(ans==inf)puts("impossible");
else printf("%d\n",ans);
}

【题解】Paid Roads [SP3953] [Poj3411]的更多相关文章

  1. 多次访问节点的DFS POJ 3411 Paid Roads

    POJ 3411 Paid Roads Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 24 ...

  2. poj3411 Paid Roads

    思路: 搜索.注意点和边都有可能经过多次. 实现: #include <iostream> #include <cstdio> #include <vector> ...

  3. Paid Roads POJ - 3411

    A network of m roads connects N cities (numbered from 1 to N). There may be more than one road conne ...

  4. poj 3411 Paid Roads(dfs)

    Description A network of m roads connects N cities (numbered to N). There may be more than one road ...

  5. POJ 3411 Paid Roads(DFS)

    题目链接 点和边 都很少,确定一个界限,爆搜即可.判断点到达注意一下,如果之前已经到了,就不用回溯了,如果之前没到过,要回溯. #include <cstring> #include &l ...

  6. POJ 3411 Paid Roads(SPFA || DFS)

    题目链接 题意 : 要从1城市到n城市,求最短路是多少,从a城市到达b城市的路程,如果你到过c城市,则需要走p,否则走r长. 思路 : 因为可以来回走,所以不能用单纯的最短路,可以用二维SPFA,状态 ...

  7. poj 3411 Paid Roads

    题意:有m条路,n座城市,走这些路是要付费的,每条路由两种付费方案,设一条路两端是a,b,如果走完这条路在b点付费的话,应付r,如果走这条路之前在c点付费的话,应付p,求从1端点走到n端点的最小费用. ...

  8. 题解-Codeforces671D Roads in Yusland

    Problem Codeforces-671D 题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边 ...

  9. 题解-CodeForces835F Roads in the Kingdom

    Problem CodeForces-835F 题意:求基环树删去环上任意一边后直径最小值,直径定义为所有点对最近距离的最大值 Solution 首先明确删去环上一点是不会影响树内直径的,所以应当先把 ...

随机推荐

  1. js删除html标记 去掉所有html标记

    js删除html标记 去掉所有html标记 function delHtml(str){ return str.replace(/<[^>]+>/g,""); / ...

  2. 英语LIGNALOO沉香lignaloo单词

    沉香lignaloo,是瑞香科.沉香属的一种乔木,高5-15米.树皮暗灰色,几平滑,纤维坚韧:小枝圆柱形,具绉纹,幼时被疏柔毛,后逐渐脱落,无毛或近无毛.产于中国广东.海南.广西.福建等地.喜生于低海 ...

  3. SQL注入:盲注

    盲注简介 所谓的盲注就是在服务器没有错误回显的时候完成的注入攻击. 服务器没有错误回显,对于攻击者来说缺少了非常重要的"调试信息". 盲注分类 1.布尔盲注 布尔很明显Ture和F ...

  4. 多个python版本共存时的pip配置

    两种方法来配置pip Func1: 1.1 找到python环境的安装包,将python.exe文件重命名,如:将python2.7版本的python.exe重命名为Python2.exe,将pyth ...

  5. Win平台下窗口操作(Unity)

    Unity发布在Win平台时, 可以通过user32.dll的方式与Win API通信, 最小化窗口代码: public static class DllImports { private const ...

  6. 使用ruamel.yaml库,解析yaml文件

    在实现的需求如下: 同事提供了一个文本文件,内含200多个host与ip的对应关系,希望能在k8s生成pod时,将这些对应关系注入到/etc/hosts中. 网上看文档,这可以通过扩充pod中的hos ...

  7. windows 7系统下查看被占用的端口并解除占用

    运行输入cmd,在命令行输入 netstat -ano 查找所占用端口所在的行,如图本例子被占用端口为9999,记住对应的pid 然后输入 tasklist|findstr pid(此处为9528) ...

  8. 可迭代对象,迭代器对象,for循环

    迭代器:迭代的工具.迭代是更新换代,如你爷爷生了你爹,你爹生了你,迭代也可以说成是重复,并且但每一次的重复都是基于上一次的结果来的.如计算机中的迭代开发,就是基于软件的上一个版本更新.以下代码就不是迭 ...

  9. hbase链接失败

    https://blog.csdn.net/u010886217/article/details/84444046

  10. JDOJ 1044 Span

    JDOJ 1044 Span https://neooj.com/oldoj/problem.php?id=1044 Description 某国有N个村子,M条道路,为了实现“村村通工程”现在要”油 ...