P4560 [IOI2014]Wall 砖墙
题目描述
给定一个长度为 nn且初始值全为 00的序列。你需要支持以下两种操作:
- Add L, R, hL,R,h:将序列 [L, R][L,R]内所有值小于 hh的元素都赋为 hh,此时不改变高度大于 hh的元素值
- Remove L, R, hL,R,h:将序列 [L, R][L,R]内所有值大于 hh的元素都赋为 hh,此时不改变高度小于 hh的元素值
你需要输出进行 kk次上述操作之后的序列。
解析
显然每次操作会对一段区间的取值范围造成影响,那么不妨我们维护区间取值的上下界,就可以轻松A掉这题。
最简单的方法就是线段树(不过貌似有人高级数据结构T了233)
那么维护上下界实质上也就是维护区间最大最小值,所以我们每次打个lazytag以保留操作对区间的影响就行了。注意是打标记而不是维护信息,我们不用区间查询,维护了这堆信息也没用,还浪费时间。。。
最后输出我们把lazytag造成的所有影响很好的维护出来,再遍历一次整棵线段树输出叶子节点的lazytag就行了。
那如何维护lazytag呢?我们就要关注pushdown怎么弄。
设\(up(h),down(h)\)分别对应在线段树上进行Add,Remove两种操作,改变的高度为\(h\)。
对于\(up(h)\),设改变的区间上下界为\(u,d\):
- 若\(x<d\),不会对区间造成影响
- 若\(d<x<u\),此时\(d\)变为\(x\),\(u\)不变
- 若\(x>u\),此时\(d,u\)都变为\(x\)。
参考代码
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define N 2000010
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
struct node{
int l,r;
int up,down;
}t[N<<2];
int n,k;
inline void pushdown(int p)
{
if(p==0) return;
if(t[p].up!=0){
t[p<<1].up=max(t[p].up,t[p<<1].up);
t[p<<1|1].up=max(t[p].up,t[p<<1|1].up);
if(t[p<<1].down<t[p].up) t[p<<1].down=t[p].up;
if(t[p<<1|1].down<t[p].up) t[p<<1|1].down=t[p].up;
t[p].up=0;
}
if(t[p].down!=INF){
t[p<<1].down=min(t[p].down,t[p<<1].down);
t[p<<1|1].down=min(t[p].down,t[p<<1|1].down);
if(t[p<<1].up>t[p].down) t[p<<1].up=t[p].down;
if(t[p<<1|1].up>t[p].down) t[p<<1|1].up=t[p].down;
t[p].down=INF;
}
}
inline void build(int p,int l,int r)
{
t[p].l=l,t[p].r=r;t[p].up=0,t[p].down=INF;
if(l==r) return;
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
}
inline void up(int p,int l,int r,int val)
{
if(l<=t[p].l&&t[p].r<=r){
t[p].up=max(t[p].up,val);
t[p].down=max(val,t[p].down);
return;
}
pushdown(p);
int mid=(t[p].l+t[p].r)>>1;
if(l<=mid) up(p<<1,l,r,val);
if(r>mid) up(p<<1|1,l,r,val);
}
inline void down(int p,int l,int r,int val)
{
if(l<=t[p].l&&t[p].r<=r){
t[p].down=min(t[p].down,val);
t[p].up=min(t[p].up,val);
return;
}
pushdown(p);
int mid=(t[p].l+t[p].r)>>1;
if(l<=mid) down(p<<1,l,r,val);
if(r>mid) down(p<<1|1,l,r,val);
}
inline void query(int p,int l,int r)
{
if(t[p].l==t[p].r){
printf("%d\n",t[p].up);
return;
}
pushdown(p);
int mid=(t[p].l+t[p].r)>>1;
if(l<=mid) query(p<<1,l,r);
if(r>mid) query(p<<1|1,l,r);
}
int main()
{
n=read(),k=read();
build(1,1,n);
for(int i=1;i<=k;++i){
int cmd=read(),l=read(),r=read(),val=read();
++l,++r;
if(cmd==1) up(1,l,r,val);
else down(1,l,r,val);
}
query(1,1,n);
return 0;
}
P4560 [IOI2014]Wall 砖墙的更多相关文章
- LUOGU P4560 [IOI2014]Wall 砖墙 (线段树)
传送门 解题思路 线段树打标记,刚开始想复杂了,维护了四个标记.后来才知道只需要维护一个最大值最小值即可,然后更新的时候分类讨论一下. 代码 #include<iostream> #inc ...
- 4364: [IOI2014]wall砖墙
4364: [IOI2014]wall砖墙 链接 分析: 线段树,维护一个最大值,一个最小值. 代码: #include<bits/stdc++.h> ],*p1 = buf,*p2 = ...
- bzoj4364: [IOI2014]wall砖墙
线段树打标记的好(luo)题 打打标记,记得下移 = =听说2000000是用来卡线段树的 = =怎么办呢,,, = =打个读入优化看看能不能卡过去吧 #include<cstdio> # ...
- BZOJ4364: [IOI2014]wall砖墙(线段树)
题意 题目链接 Sol 一个显然的思路是维护最大最小值以及最大最小值的覆盖标记. https://paste.ubuntu.com/p/WXpBvzF6Y2/ 但实际上因为这题只需要输出最后的操作序列 ...
- 【[IOI2014]Wall 砖墙】
好像随便一卡就最优解了 malao告诉我这道题挺不错的,于是就去写了写 这两个操作很有灵性啊,感觉这么有特点的数大概是需要分块维护的吧 但是并没有什么区间查询,只是在最后输出整个序列 于是我们就直接用 ...
- [IOI2014]Wall
[IOI2014]Wall 题目大意: 给你一个长度为\(n(n\le2\times10^6)\)的数列,初始全为\(0\).\(m(m\le5\times10^5)\)次操作,每次让区间\([l_i ...
- 「IOI2014」Wall 砖墙
题目描述 给定一个初始元素为 \(0\) 的数列,以及 \(K\) 次操作: 将区间 \([L, R]\) 中的元素对 \(h\) 取 \(max\) 将区间 \([L, R]\) 中的元素对 \(h ...
- BZOJ4364:[IOI2014]Wall
浅谈区间最值操作与历史最值问题:https://www.cnblogs.com/AKMer/p/10225100.html 题目传送门:https://lydsy.com/JudgeOnline/pr ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- 【ARM-Linux开发】【CUDA开发】NVIDIA Jetson TX2 进阶:QtCreator安装
Here we have a short article on installing Qt Creator on the NVIDIA Jetson TX1. Looky here: Note: Th ...
- webx入门
- Resharper速度慢解决办法
Reshaper很好用,但是安装后速度特别慢,大部分情况下,我们只需要使用一些插件功能,代码自动分析功能可以关闭,如图:取消Code analysis即可.
- 小白的C++之路——结构体
结构体与数组不同的是结构体能包含不同类型的数据,像一个综合性的仓库,更加灵活. #include <iostream> #include <string> #include & ...
- 我瞅瞅源码系列之---flask
快速使用 通过werkzurg 了解wsgi threading.local和高级 LocalStack和Local对象实现栈的管理 Flask源码之:配置加载 Flask源码之:路由加载 ...
- golang执行命令行(一)
golang中会经常遇到要 fork 子进程的需求.go 标准库为我们封装了 os/exec标准包,当我们要运行外部命令时应该优先使用这个库. 执行 command 这里我简单结合context 和 ...
- nacos初探--作为配置中心
什么是nacos Nacos 支持基于 DNS 和基于 RPC 的服务发现(可以作为springcloud的注册中心).动态配置服务(可以做配置中心).动态 DNS 服务. 官方介绍是这样的: Nac ...
- nginx+lua访问流量实时上报kafka
在nginx这一层,接收到访问请求的时候,就把请求的流量上报发送给kafka storm才能去消费kafka中的实时的访问日志,然后去进行缓存热数据的统计 从lua脚本直接创建一个kafka prod ...
- RStudio中安装factoextra包的问题
最近在做一个R语言的小作业,其中聚类分析部分需要用到factoextra安装包,在RStudio中输入install.packages("factoextra")之后,就一直出现“ ...
- AS shortcuts
stl => statelessstf => statefulalt+enter, select element => add pading or somethingselect c ...