4. Spark SQL数据源
4.1 通用加载/保存方法
4.1.1手动指定选项
Spark SQL的DataFrame接口支持多种数据源的操作。一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表。把DataFrame注册为临时表之后,就可以对该DataFrame执行SQL查询
Spark SQL的默认数据源为Parquet格式。数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作。修改配置项spark.sql.sources.default,可修改默认数据源格式
val df = spark.read.load("examples/src/main/resources/users.parquet")
df.select("name","favorite_color").write.save("namesAndFavColors.parquet")
当数据源格式不是parquet格式文件时,需要手动指定数据源的格式。数据源格式需要指定全名(例如:org.apache.spark.sql.parquet),如果数据源格式为内置格式,则只需要指定简称定json,parquet,jdbc,orc,libsvm,csv,text来指定数据的格式
可以通过SparkSession提供的read.load方法用于通用加载数据,使用write和save保存数据
val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF.write.format("parquet").save("hdfs://master01:9000/namesAndAges.parquet")
除此之外,可以直接运行SQL在文件上:
val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs://master01:9000/namesAndAges.parquet`")
sqlDF.show()
scala> val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> peopleDF.write.format("parquet").save("hdfs://master01:9000/namesAndAges.parquet")
scala> peopleDF.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
scala> val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs://master01:9000/namesAndAges.parquet`")
19/07/17 11:15:11 WARN ObjectStore: Failed to get database parquet, returning NoSuchObjectException
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> sqlDF.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
4.1.2 文件保存选项
可以采用SaveMode执行存储操作,SaveMode定义了对数据的处理模式。需要注意的是,这些保存模式不使用任何锁定,不是原子操作。此外,当使用Overwrite方式执行时,在输出新数据之前原数据就已经被删除。SaveMode详细介绍如下表
|
Scala/Java |
Any Language |
Meaning |
|
SaveMode.ErrorIfExists(default) |
"error"(default) |
如果文件存在,则报 错 |
|
SaveMode.Append |
"append" |
追加 |
|
SaveMode.Overwrite |
"overwrite" |
覆写 |
|
SaveMode.Ignore |
"ignore" |
数据存在,则忽略 |
4.2 Parquet文件
Parquet是一种流行的列式存储格式,可以高效地存储具有嵌套字段的记录

4.2.1 Parquet读写
Parquet格式经常在Hadoop生态圈中被使用,它也支持Spark SQL的全部数据类型。Spark SQL提供了直接读取和存储Parquet格式文件的方法
// Encoders for most common types are automatically provided by importing spark.implicits._
import spark.implicits._ val peopleDF = spark.read.json("examples/src/main/resources/people.json") // DataFrames can be saved as Parquet files, maintaining the schema information
peopleDF.write.parquet("hdfs://master01:9000/people.parquet") // Read in the parquet file created above
// Parquet files are self-describing so the schema is preserved
// The result of loading a Parquet file is also a DataFrame
val parquetFileDF = spark.read.parquet("hdfs://master01:9000/people.parquet") // Parquet files can also be used to create a temporary view and then used in SQL statements
parquetFileDF.createOrReplaceTempView("parquetFile")
val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
namesDF.map(attributes => "Name: " + attributes(0)).show()
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
4.2.2 解析分区信息
对表进行分区是对数据进行优化的方式之一。在分区的表内,数据通过分区列将数据存储在不同的目录下。Parquet数据源现在能够自动发现并解析分区信息。例如,对人口数据进行分区存储,分区列为gender和country,使用下面的目录结构:

通过传递path/to/table给SQLContext.read.parquet或SQLContext.read.load,Spark SQL将自动解析分区信息。返回的DataFrame的Schema如下:

需要注意的是,数据的分区列的数据类型是自动解析的。当前,支持数值类型和字符串类型。自动解析分区类型的参数为:spark.sql.sources.partitionColumnTypeInference.enabled,默认值为true。如果想关闭该功能,直接将该参数设置为disabled。此时,分区列数据格式将被默认设置为string类型,不再进行类型解析
4.2.3 Schema合并
像ProtocolBuffer、Avro和Thrift那样,Parquet也支持Schema evolution(Schema演变)。用户可以先定义一个简单的Schema,然后逐渐的向Schema中增加列描述。通过这种方式,用户可以获取多个有不同Schema但相互兼容的Parquet文件。现在Parquet数据源能自动检测这种情况,并合并这些文件的schemas
因为Schema合并是一个高消耗的操作,在大多数情况下并不需要,所以Spark SQL从1.5.0开始默认关闭了该功能。可以通过下面两种方式开启该功能:
当数据源为Parquet文件时,将数据源选项mergeSchema设置为true
设置全局SQL选项spark.sql.parquet.mergeSchema为true
示例如下:
// sqlContext from the previous example is used in this example.
// This is used to implicitly convert an RDD to a DataFrame.
import spark.implicits._ // Create a simple DataFrame, stored into a partition directory
val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")
df1.write.parquet("hdfs://master01:9000/data/test_table/key=1") // Create another DataFrame in a new partition directory,
// adding a new column and dropping an existing column
val df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")
df2.write.parquet("hdfs://master01:9000/data/test_table/key=2") // Read the partitioned table
val df3 = spark.read.option("mergeSchema", "true").parquet("hdfs://master01:9000/data/test_table")
df3.printSchema() // The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths.
// root
// |-- single: int (nullable = true)
// |-- double: int (nullable = true)
// |-- triple: int (nullable = true)
// |-- key : int (nullable = true)
4.3 Hive数据库
Apache Hive是Hadoop上的SQL引擎,Spark SQL编译时可以包含Hive支持,也可以不包含。包含Hive支持的Spark SQL可以支持Hive表访问、UDF(用户自定义函数)以及Hive查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在Spark SQL中包含Hive的库,并不需要事先安装Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果下载的是二进制版本的Spark,它应该已经在编译时添加了Hive支持
若要把Spark SQL连接到一个部署好的Hive上,必须把hive-site.xml复制到Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好Hive,Spark SQL也可以运行。需要注意的是,如果没有部署好Hive,Spark SQL会在当前的工作目录中创建出自己的Hive元数据仓库,叫做metastore_db。此外,如果尝试使用HiveQL中的CREATE TABLE(并非CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在默认的文件系统中的/user/hive/warehouse目录中(如果classpath中配好的hdfs-site.xml,默认的文件系统就是HDFS,否则就是本地文件系统)
import java.io.File import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession case class Record(key: Int, value: String) // warehouseLocation points to the default location for managed databases and tables
val warehouseLocation = new File("spark-warehouse").getAbsolutePath val spark = SparkSession
.builder()
.appName("Spark Hive Example")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport()
.getOrCreate() import spark.implicits._
import spark.sql sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src") // Queries are expressed in HiveQL
sql("SELECT * FROM src").show()
// +---+-------+
// |key| value|
// +---+-------+
// |238|val_238|
// | 86| val_86|
// |311|val_311|
// ... // Aggregation queries are also supported.
sql("SELECT COUNT(*) FROM src").show()
// +--------+
// |count(1)|
// +--------+
// | 500 |
// +--------+ // The results of SQL queries are themselves DataFrames and support all normal functions.
val sqlDF = sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key") // The items in DataFrames are of type Row, which allows you to access each column by ordinal.
val stringsDS = sqlDF.map {
case Row(key: Int, value: String) => s"Key: $key, Value: $value"
}
stringsDS.show()
// +--------------------+
// | value|
// +--------------------+
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// ... // You can also use DataFrames to create temporary views within a SparkSession.
val recordsDF = spark.createDataFrame((1 to 100).map(i => Record(i, s"val_$i")))
recordsDF.createOrReplaceTempView("records") // Queries can then join DataFrame data with data stored in Hive.
sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show()
// +---+------+---+------+
// |key| value|key| value|
// +---+------+---+------+
// | 2| val_2| 2| val_2|
// | 4| val_4| 4| val_4|
// | 5| val_5| 5| val_5|
// ...
4.3.1 内嵌Hive应用
如果要使用内嵌的Hive,什么都不用做,直接用就可以了。--conf: spark.sql.warehouse.dir=
注意:如果使用的是内部的Hive,在Spark2.0之后,spark.sql.warehouse.dir用于指定数据仓库的地址,如果你需要是用HDFS作为路径,那么需要将core-site.xml和hdfs-site.xml加入到Spark conf目录,否则只会创建master节点上的warehouse目录,查询时会出现文件找不到的问题,这是需要向使用HDFS,则需要将metastore删除,重启集群
4.3.2 外部Hive应用
如果想连接外部已经部署好的Hive,需要通过以下几个步骤
1) 将Hive中的hive-site.xml拷贝或者软连接到Spark安装目录下的conf目录下
2) 打开spark shell,注意带上访问Hive元数据库的JDBC客户端
$ bin/spark-shell --master spark://master01:7077 --jars mysql-connector-java- 5.1.27-bin.jar
4.4 JSON数据集
Spark SQL能够自动推测JSON数据集的结构,并将它加载为一个Dataset[Row]。可以通过SparkSession.read.json()去加载一个Dataset[String]或者一个JSON文件,注意,这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
// Primitive types (Int, String, etc) and Product types (case classes) encoders are
// supported by importing this when creating a Dataset.
import spark.implicits._ // A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files
val path = "examples/src/main/resources/people.json"
val peopleDF = spark.read.json(path) // The inferred schema can be visualized using the printSchema() method
peopleDF.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true) // Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people") // SQL statements can be run by using the sql methods provided by spark
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
// +------+
// | name|
// +------+
// |Justin|
// +------+ // Alternatively, a DataFrame can be created for a JSON dataset represented by
// a Dataset[String] storing one JSON object per string
val otherPeopleDataset = spark.createDataset(
"""{"name":"Hui","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherPeople = spark.read.json(otherPeopleDataset)
otherPeople.show()
// +---------------+----+
// | address|name|
// +---------------+----+
// |[Columbus,Ohio]| Hui|
// +---------------+----+
4.5 JDBC
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中
注意,需要将相关的数据库驱动放到spark的类路径下
$ bin/spark-shell --master spark://master01:7077 --jars mysql-connector-java- 5.1.27-bin.jar
// Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
// Loading data from a JDBC source
val jdbcDF = spark.read.format("jdbc").option("url",
"jdbc:mysql://master01:3306/rdd").option("dbtable", " rddtable").option("user", "root").option("password", "hive").load() val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "hive")
val jdbcDF2 = spark.read.jdbc("jdbc:mysql://master01:3306/rdd", "rddtable", connectionProperties) // Saving data to a JDBC source
jdbcDF.write
.format("jdbc")
.option("url", "jdbc:mysql://master01:3306/rdd")
.option("dbtable", "rddtable2")
.option("user", "root")
.option("password", "hive")
.save() jdbcDF2.write.jdbc("jdbc:mysql://master01:3306/mysql", "db", connectionProperties) // Specifying create table column data types on write
jdbcDF.write
.option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
.jdbc("jdbc:mysql://master01:3306/mysql", "db", connectionProperties)
4. Spark SQL数据源的更多相关文章
- Spark SQL数据源
[TOC] 背景 Spark SQL是Spark的一个模块,用于结构化数据的处理. ++++++++++++++ +++++++++++++++++++++ | SQL | | Dataset API ...
- spark sql数据源--hive
使用的是idea编辑器 spark sql从hive中读取数据的步骤:1.引入hive的jar包 2.将hive-site.xml放到resource下 3.spark sql声明对hive的支持 案 ...
- 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...
- DataFrame编程模型初谈与Spark SQL
Spark SQL在Spark内核基础上提供了对结构化数据的处理,在Spark1.3版本中,Spark SQL不仅可以作为分布式的SQL查询引擎,还引入了新的DataFrame编程模型. 在Spark ...
- 【转载】Spark SQL之External DataSource外部数据源
http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发 ...
- spark SQL学习(数据源之json)
准备工作 数据文件students.json {"id":1, "name":"leo", "age":18} {&qu ...
- 第十一篇:Spark SQL 源码分析之 External DataSource外部数据源
上周Spark1.2刚发布,周末在家没事,把这个特性给了解一下,顺便分析下源码,看一看这个特性是如何设计及实现的. /** Spark SQL源码分析系列文章*/ (Ps: External Data ...
- spark SQL学习(数据源之parquet)
Parquet是面向分析型业务得列式存储格式 编程方式加载数据 代码示例 package wujiadong_sparkSQL import org.apache.spark.sql.SQLConte ...
- spark sql使用sequoiadb作为数据源
目前没有实现,理一下思路,有3中途径: 1:spark core可以使用sequoiadb最为数据源,那么是否spark sql可以直接操作sequoiadb. 2: spark sql支持Hive, ...
随机推荐
- pip包管理工具 基本使用
# 简介 pip是一款包管理工具, 和apt, yum, brew功能类似 # 安装 wget --no-check-certificate https://bootstrap.pypa.io/get ...
- Linux 系统管理——账号管理
一.用户账号管理 1.用户账户概述 用户账户的常见分类: 超级用户:root uid=0 gid=0 权限最大 普通用户:uid>=500 做一般权限的系统管理,权限有限. 程序用户:1 ...
- 计蒜客——Goldbach
Goldbach 判断大素数 #include<cstdio> #include<cstdlib> using namespace std; #define N 10000 t ...
- 测试linux下磁盘的读写速率
1) 通过df -h命令查看磁盘情况 Filesystem Size Used Avail Use% Mounted on/dev/sda4 289G ...
- Fiddler常用功能总结
使用Fildder几年来,深深的体会到了其便利性,给工作带来了极大的便利,所以把其它常用功能总结如下 一:介绍 1.免费,支持抓取http.https协议,可独立运动 2.原理:(客户通过移动端或是P ...
- Linux /var/log下各种日志文件
Linux /var/log下各种日志文件:
- mongodb设置 十个要点
mongodb设置 十个要点 一.对象ID的生成 每一个mongoDB文档那个都要求有一个主键.它在每一个集合中对全部的文档必须是唯一的.主键存放在文档_id字段中.由12个字符组成: 4c291 ...
- 生成Nginx服务器SSL证书和客户端证书
Nginx服务器SSL证书 生成pass key 下面的命令用于生成一个2048bit的pass key, -passout pass:111111 用于避免交互式输入密码 [tomcat@a02 t ...
- 027_MacOs上如何将多页word打印到一个页面上
工作中需要把word的多页面内容打印到同一张A4纸,所以就想了办法,首先word导出到pdf. 然后使用MacOs默认的PDF阅读器进行多页打印. 操作如下: 文件-打印布局选择每张纸需要打印的页数左 ...
- QT中常用工具总结
1.qmake 利用.pro文件生成Makefile 命令为: eg: qmake -o Makefile hello.pro 2. uic 利用ui界面审查.h头文件 命令为: eg: uic go ...