传送门

动归,用f[i][j]表示到达第I列高度为j时最少需要飞的次数,容易想到最裸的转移:

f[i][j]=min(min(f[i-1][j-up[i-1]*k]+k),f[i-1][j+down[i-1]])

但是会超时

考虑怎么优化k的循环,发现k可以从k-1转移过来,从图上来理解就是比如k=2时,相当于可以先从i-1列飞一次飞到i列的j-up[i-1]位置,然后再往上跳一次跳到i的j位置,也就是f[i][j]可以从f[i]

[j-up[i-1]]+1转移来,这里需要注意几个地方

1.由于f[i][j-up[i-1]]相当于是中转的位置,所以无论那个位置是不是管道都要做

2.要保证f[i][j-up[i-1]]可以充当中转,所以必须先做一次只飞不掉的,再做一次掉下来的,否则会出现f[i][j-up[i-1]]位置可能是从i-1列掉下来得到的,此时不能充当中转

3.要特殊处理高度为m的情况(看题目)

——代码

 #include <cstdio>
#include <iostream> const int INF = , N = , M = ;
int n, m, k, b, ans = INF, sum;
int x[N], y[N], l[N], h[N], f[][M]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline int min(int x, int y)
{
return x < y ? x : y;
} int main()
{
int i, j, p;
n = read();
m = read();
k = read();
for(i = ; i < n; i++)
{
x[i] = read();
y[i] = read();
}
for(i = ; i <= k; i++)
{
p = read();
l[p] = read();
h[p] = read();
}
for(i = ; i <= n; i++)
{
for(j = ; j <= m; j++) f[i & ][j] = INF;
for(j = x[i - ] + ; j <= m; j++)
f[i & ][j] = min(f[i & ][j], f[i & ^ ][j - x[i - ]] + ),
f[i & ][j] = min(f[i & ][j], f[i & ][j - x[i - ]] + );
for(j = m - x[i - ]; j <= m; j++)
f[i & ][m] = min(f[i & ][m], f[i & ^ ][j] + ),
f[i & ][m] = min(f[i & ][m], f[i & ][j] + );
for(j = ; j <= m - y[i - ]; j++) f[i & ][j] = min(f[i & ][j], f[i & ^ ][j + y[i - ]]);
if(l[i]) for(j = ; j <= l[i]; j++) f[i & ][j] = INF;
if(h[i]) for(j = h[i]; j <= m; j++) f[i & ][j] = INF;
if(l[i] || h[i])
{
b = ;
for(j = l[i] + ; j < h[i]; j++)
if(f[i & ][j] < INF)
{
b = ;
break;
}
if(b) sum++;
else break;
}
}
if(i == n + )
{
for(j = ; j <= m; j++) ans = min(ans, f[n & ][j]);
printf("1\n%d\n", ans);
}
else printf("0\n%d\n", sum);
return ;
}

[luoguP1941] 飞扬的小鸟(DP)的更多相关文章

  1. 飞扬的小鸟 DP

    飞扬的小鸟 DP 细节有点恶心的DP,设\(f[i][j]\)表示横坐标为\(i\)(从\(0\)开始)高度为\(j\)时,屏幕点击的最小次数为\(f[i][j]\),转移便很好写了,这里要注意枚举当 ...

  2. NOIP 2014飞扬的小鸟(DP优化)

    题目链接  飞扬的小鸟 考场的70分暴力(实际只有50分因为数组开小了……) 考场代码(数组大小已修改) #include <cstdio> #include <cstring> ...

  3. [NOIP2014]飞扬的小鸟[DP]

    [NOIP2014]飞扬的小鸟 ——!x^n+y^n=z^n 题目描述: Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画 ...

  4. 【动态规划】luoguP1941 飞扬的小鸟

    细节总是打挂选手:) 题目描述 Flappy Bird是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管 ...

  5. P1941 飞扬的小鸟[dp]

    题目描述 Flappy Bird是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管或者掉在地上的话,便宣 ...

  6. NOIP2014飞扬的小鸟[DP][WRONG]

    坑人啊朴素的dp 75分 用了完全背包才是80分,结果普遍偏小 为什么啊啊啊啊啊 等以后再写一遍吧 #include<iostream> #include<cstdio> #i ...

  7. luogu1941 [NOIp2014]飞扬的小鸟 (dp)

    设f[i][j]为到达(i,j)这个位置的最小操作数 就有$f[i][j]=min\{f[i-1][j+Y[i-1]],f[i-1][j-X[i-1]*k]+k\}$ 然后考虑优化一下转移: 对于一系 ...

  8. [NOIP2014][DP]飞扬的小鸟

    [NOIP2014]飞扬的小鸟 ——!x^n+y^n=z^n 题目描述: Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画 ...

  9. UOJ #17. 【NOIP2014】飞扬的小鸟 背包DP

    #17. [NOIP2014]飞扬的小鸟 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4902  Solved: 1879 题目连接 http:// ...

随机推荐

  1. bzoj 1589: [Usaco2008 Dec]Trick or Treat on the Farm 采集糖果【tarjan+记忆化搜索】

    对这个奇形怪状的图tarjan,然后重新连边把图变成DAG,然后记忆化搜索即可 #include<iostream> #include<cstdio> using namesp ...

  2. (数论)51NOD 1079 中国剩余定理

    一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数 ...

  3. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  4. EditText(8)EditText中drawableRight图片的点击事件

    参考: http://stackoverflow.com/questions/3554377/handling-click-events-on-a-drawable-within-an-edittex ...

  5. javascript面试题集

    1.如何把一句英文每个单词第一个字母大写? var str = "what fuck is 1235 going on ?"; var newArr = str.split(&qu ...

  6. Javascript的一些技巧(《Javascript DOM编程艺术》、Javascript语言精粹)

    1.什么时候用布尔变量当变量 假设你需要一个这样的变量:我在睡觉——存为一个值:我没在睡觉——存为另一个值. 一般的做法: var stateOne="睡觉",stateTwo=& ...

  7. windows2008 rs+sql 2008 下配置站点权限

    几点注意 Windows 2008 iis7.5  1 建立应用程序池 2 文件目录的权限加上 IIS AppPool\应用程序池名称 (找不到直接录入) 3 文件目录要给 IUser权限,不然出错. ...

  8. 最优化方法系列:SGD、Adam

    整理一下资源,不过最好还是根据书上的理论好好推导一下..... 文章链接:Deep Learning 最优化方法之SGD 72615436 本文是Deep Learning 之 最优化方法系列文章 整 ...

  9. PHP封装数据库

    (1)按照步骤封装数据库 ①引入抽象类和抽象方法,即引入模板: ②继承抽象类,注意参数(规定几个就传入几个): ③逐个写入抽象方法,必须一一对应:(抽象方法必须一一引入,否则会报错-->有个抽象 ...

  10. 【Redis】三、Redis安装及简单示例

    (四)Redis安装及使用   Redis的安装比较简单,仍然和大多数的Apache开源软件一样,只需要下载,解压,配置环境变量即可.具体安装过程参考:菜鸟教程Redis安装.   安装完成后,通过r ...