HDU - 6446 Tree and Permutation
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6446
本题是一个树上的问题——DFS。
一棵N个结点的树,其结点为1~N。树具有N-1条边,每一条边具有一个权值。
1~N具有N!个不同的排列,第i(1≤i≤N!)个排列记为P[i],第i个排列中的第j(1≤j≤N)个数记为P[i][j]。
对于第i个排列P[i],在树上沿最短路依次通过P[i][1]~P[i][N]。记最短路的权值和为S[i],求解:
$\sum_{i=1}^{N!} S_i \mod M$
考虑1~N间的两个不同的数u、v。在N!个排列中,v恰好为u的后继的排列数为(N-1)!。于是,若记u→v的最短路为D(u,v),则所求答案为:
$(N-1)!\:*\sum_{u\ne v}D(u,v)\mod M$
现在,考虑式:
$f(T)=\sum_{u<v}D(u,v)\cdots(*)$
接下来,考虑树的结点与边。无向树上的每一个结点都是树的割顶,每一条边都是树的桥。于是,树上的每一条边将树划分为两棵子树。考虑连接结点u、v的边:这条边将树划分为以结点u为根的子树、和以结点v为根的子树。设以结点u为根的子树的结点数为cnt[u],则以结点v为根的子树的结点数为cnt[v]=N-cnt[u]。
回到式(*)中,则边(u,v)对式子的贡献为$w(u,v)*cnt[u]*cnt[v]$。
考虑通过DFS预处理cnt[]:选取某一个结点作为根结点,通过DFS预处理以结点u为根的子树的结点数cnt[u]。之后,遍历树上的边:连接结点v与其父结点的边,其对式子的贡献为$w(p[v],v)*cnt[v]*(N-cnt[v])$。
考虑到双向,答案为$ans=2(N-1)!\:*f(T)\mod M$。
参考程序如下:
#include <bits/stdc++.h>
using namespace std; #define MAX_N 100005 const int64_t mod = 1e9 + ; struct arrow
{
int to;
int cost;
arrow(int to = , int cost = ) : to(to), cost(cost) {}
}; int64_t fact[MAX_N]; void init(void)
{
fact[] = ;
for (int i = ; i < MAX_N; i++) fact[i] = fact[i - ] * i % mod;
} int n;
vector<arrow> adj[MAX_N]; int64_t ans;
int cnt[MAX_N]; void dfs_cnt(int u, int p)
{
cnt[u] = ;
for (int i = ; i < adj[u].size(); i++) {
int v = adj[u][i].to;
if (v == p) continue;
dfs_cnt(v, u);
cnt[u] += cnt[v];
}
} void dfs_calc(int u, int p)
{
for (int i = ; i < adj[u].size(); i++) {
int v = adj[u][i].to;
int w = adj[u][i].cost;
if (v == p) continue;
int64_t cur = 1ll * cnt[v] * (n - cnt[v]);
ans += cur * w % mod;
ans %= mod;
dfs_calc(v, u);
}
} int main(void)
{
ios::sync_with_stdio(false);
init();
while (cin >> n) {
memset(cnt, , sizeof(cnt));
for (int i = ; i < n; i++) {
int u, v, w;
cin >> u >> v >> w;
adj[u].push_back(arrow(v, w));
adj[v].push_back(arrow(u, w));
}
ans = ;
dfs_cnt(, -);
dfs_calc(, -);
cout << 2ll * ans % mod * fact[n - ] % mod << endl;
for (int i = ; i <= n; i++) adj[i].clear();
}
return ;
}
HDU - 6446 Tree and Permutation的更多相关文章
- (1009) HDU 6446 Tree and Permutation(规律+树上各个点的距离和)
题意: 给一棵N个点的树,对应于一个长为N的全排列,对于排列的每个相邻数字a和b,他们的贡献是对应树上顶点a和b的路径长,求所有排列的贡献和. 分析: 经过简单的分析可以得知,全部的贡献其实相当与(这 ...
- HDU 6446 Tree and Permutation(赛后补题)
>>传送门<< 分析:这个题是结束之后和老师他们讨论出来的,很神奇:刚写的时候一直没有注意到这个是一个树这个条件:和老师讨论出来的思路是,任意两个结点出现的次数是(n-1)!, ...
- Tree and Permutation (HDU 6446) 题解
// 昨天打了一场网络赛,表现特别不好,当然题目难度确实影响了发挥,但还是说明自己太菜了,以后还要多多刷题. 2018 CCPC 网络赛 I - Tree and Permutation 简单说明一下 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Tree and Permutation 找规律+求任意两点的最短路
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- HDU 5868 Different Circle Permutation(burnside 引理)
HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...
- hdu 5225 Tom and permutation(回溯)
题目链接:hdu 5225 Tom and permutation #include <cstdio> #include <cstring> #include <algo ...
- hdu 5909 Tree Cutting [树形DP fwt]
hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...
- HDU6446 Tree and Permutation(树上DP)
传送门:点我 Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (J ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
随机推荐
- oracle 定时器调用存储过程
转载请说明出处:http://t22011787.iteye.com/blog/1112745 一.查询系统中的job,可以查询视图 --相关视图 select * from dba_jobs; se ...
- JSP-Runoob:JSP 结构
ylbtech-JSP-Runoob:JSP 结构 1.返回顶部 1. JSP 结构 网络服务器需要一个 JSP 引擎,也就是一个容器来处理 JSP 页面.容器负责截获对 JSP 页面的请求.本教程使 ...
- Java中wait和sleep方法的区别
1.两者的区别 这两个方法来自不同的类分别是Thread和Object 最主要是sleep方法没有释放锁,而wait方法释放了锁,使得其他线程可以使用同步控制块或者方法(锁代码块和方法锁). wait ...
- tp5增加验证的自定义规则
- docker血一样的教训,生成容器的时候一定要设置数据卷,把数据文件目录,配置文件目录,日志文件目录都要映射到宿主机上保存啊!!!
打个比方,比如mysql,如果你想重新设置一下mysql的配置,不小心配错里,启动容器失败,已启动就停止了. 根本进不去mysql的容器里.如果之前run容器的时候,没有把数据文件,日志文件,配置文件 ...
- CSS之背景设置、字体设置、文本设置
<html> <head> <meta charset="utf-8"> <title>单行文本框与多行文本框</title& ...
- 树莓派GPIO点亮第一个led
代码如下: 注意:::::此时的GPIO口为18编号口而非GPIO18 import RPi.GPIO as GPIO //引入函数库 import time RPi.GPIO.setmode(GPI ...
- Appium基于python unittest自动化测试并生成html测试报告
本文基于python单元测试框架unittest完成appium自动化测试,生成基于html可视化测试报告 代码示例: #利用unittest并生成测试报告 class Appium_test(uni ...
- PAT 甲级1135. Is It A Red-Black Tree (30)
链接:1135. Is It A Red-Black Tree (30) 红黑树的性质: (1) Every node is either red or black. (2) The root is ...
- HDU_2844_(多重背包)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...