Lucas(卢卡斯)定理
Lucas定理
对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算。但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢卡斯定理来减小m,n的规模,此处证明略去,给出公式:
C(n,m)%P=C(n/P,m/P)*C(n%P,m%P)%P
```C++
ll Lucas(ll n,ll m)
{
if (m==0)
return 1;
return C(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod;
}
```
Lucas(卢卡斯)定理的更多相关文章
- Lucas 卢卡斯定理
Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...
- CRT中国剩余定理 & Lucas卢卡斯定理
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- Lucas卢卡斯定理
当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...
- Lucas(卢卡斯)定理
公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 typedef long long ll; ll mod_pow(ll x, ...
- 卢卡斯定理 Lucas (p为素数)
证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...
- 卢卡斯定理Lucas
卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...
- 数论篇7——组合数 & 卢卡斯定理(Lucas)
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
随机推荐
- Rust 优劣势: v.s. C++ / v.s. Go(持续更新)
Rust 发展速度比 C++ 强很多.如果去翻 open-std 的故纸堆,会发现 C++ 这边有很多人(包括标准委员会的人)提了有用的提案,但后来大多不了了之或经历了非常长的时间才进入标准. > ...
- HTML——form表单中常用标签 form input (text hidden password radio checkbox reset submit ) select(option)总结
<form action="" method="get"> <!-- placeholder="请输入文本" 显示提示 r ...
- asp.net 5.图片和验证码
1.基本画图 //给用户创建一张图片,并且保持一张图片. //创建一个画布 , )) { //绘画布创建一个画笔 using (Graphics g = Graphics.FromImage(map) ...
- python之字符串类型及其操作
1.1字符串类型的表示 字符串是字符的序列表示,可以由一对单引号('). 双引号(")或三引号(’")构成.其中,单引号和双引号都可以表示单行字符串,两者作用相同.使用单引号时,双 ...
- Hyperledger Fabric(5)ChainCode的编写步骤
链码(chaincode) 会对 Fabric应用程序 发送的交易做出响应,执行代码逻辑,与 账本 进行交互. 再复习下他们之间的逻辑关系: Hyperledger Fabric 中,Chainco ...
- Troubleshooting: Cannot Run on an Android Device
同事在他的开发环境中,在IDE中直接在手机上运行Android项目,结果出现这个错误,无法在手机上安装. 产生这个问题的原因,一般就是签名不对,这种情况,删除手机上装过的同名应用,就可以解决.当然,你 ...
- JavaJDBC【一、概述】
其实这个内容在学习java基础的时候就有看过了,只是没有详细整理,在这再整理一下 数据库操作对于任何一门后端语言来说都是很重要的 JDBC:Java Data Base Connectivity 内容 ...
- 第十三章、元类(metaclass)
目录 第十三章.元类(metaclass) 一.什么是元类 二.为什么用元类 第十三章.元类(metaclass) 一.什么是元类 在python中一切皆对象,那么我们用class关键字定义的类本身也 ...
- 第五篇python进阶之深浅拷贝
目录 第五篇python进阶之深浅拷贝 一.引言 1.1可变 和不可变 二.拷贝(只针对可变数据类型) 三.浅拷贝 四.深拷贝 第五篇python进阶之深浅拷贝 一.引言 1.1可变 和不可变 id不 ...
- zabbix 3.2.2 server端(源码包)安装部署 (一)
环境准备: 操作系统 CentOS 6.8 2.6.32-642.11.1.el6.x86_64 zabbix server 172.16.10.150 zabbix agent 172.16.10. ...