先看下效果图:

# 先调入需要的模块

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import seaborn as sb # 生成几个数据点 data = np.array([
[0.1, 0.7],
[0.3, 0.6],
[0.4, 0.1],
[0.5, 0.4],
[0.8, 0.04],
[0.42, 0.6],
[0.9, 0.4],
[0.6, 0.5],
[0.7, 0.2],
[0.7, 0.67],
[0.27,0.8],
[0.5, 0.72]
]) target = [1] * 6 + [0] * 6 x_line = np.linspace(0, 1, 100)
y_line = 1 - x_line
plt.scatter(data[:6, 0], data[:6, 1], marker='o', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', s=100, lw=3)
plt.plot(x_line, y_line) # 定义计算域、文字说明等 C = 0.0001 # SVM regularization parameter, since Scikit-learn doesn't allow C=0
# linear_svc = svm.SVC(kernel='linear', C=C).fit(data, target) # create a mesh to plot in
h = 0.002
x_min, x_max = data[:, 0].min() - 0.2, data[:, 0].max() + 0.2
y_min, y_max = data[:, 1].min() - 0.2, data[:, 1].max() + 0.2
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h)) # title for the plots
titles = ['SVC with linear kernel',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel'] # RBF Kernel plt.figure(figsize=(16, 15)) for i, gamma in enumerate([1, 5, 15, 35, 45, 55]):
rbf_svc = svm.SVC(kernel='rbf', gamma=gamma, C=C).fit(data, target) # ravel - flatten
# c_ - vstack
# #把后面两个压扁之后变成了x1和x2,然后进行判断,得到结果在压缩成一个矩形
Z = rbf_svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) plt.subplot(3, 2, i + 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.contourf(xx, yy, Z, cmap=plt.cm.ocean, alpha=0.6) # Plot the training points
plt.scatter(data[:6, 0], data[:6, 1], marker='o', color='r', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', color='k', s=100, lw=3) plt.title('RBF SVM with $\gamma=$' + str(gamma)) plt.show()

【364】SVM 通过 sklearn 可视化实现的更多相关文章

  1. SVM的sklearn实现

    转载:豆-Metcalf 1)SVM-LinearSVC.ipynb-线性分类SVM,iris数据集分类,正确率100% """ 功能:实现线性分类支持向量机 说明:可以 ...

  2. SVM的sklearn.svm.SVC实现与类参数

    SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...

  3. sklearn 可视化模型的训练测试收敛情况和特征重要性

    show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test ...

  4. 机器学习之sklearn——SVM

    sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...

  5. sklearn调参(验证曲线,可视化不同参数下交叉验证得分)

     一 . 原始方法: 思路: 1. 参数从 0+∞ 的一个 区间 取点, 方法如: np.logspace(-10, 0, 10) , np.logspace(-6, -1, 5) 2. 循环调用cr ...

  6. [Example of Sklearn] - SVM usge

    reference : http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine SVM是什么? SVM是一种训练机器 ...

  7. 支持向量机SVM知识梳理和在sklearn库中的应用

    SVM发展史 线性SVM=线性分类器+最大间隔 间隔(margin):边界的活动范围.The margin of a linear classifier is defined as the width ...

  8. 支持向量机SVM——专治线性不可分

    SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...

  9. 机器学习-Sklearn

    Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regres ...

随机推荐

  1. Java注解的基本概念和原理及其简单实用

      一.注解的基本概念和原理及其简单实用 注解(Annotation)提供了一种安全的类似注释的机制,为我们在代码中添加信息提供了一种形式化得方法,使我们可以在稍后某个时刻方便的使用这些数据(通过解析 ...

  2. 2018年1月 attribute VS prop 动画渲染

    attribute和prop和UI存在单向/双向绑定关系,参考 https://m.aliyun.com/yunqi/articles/31499 渲染流程 重绘和重排 ? requestAnimat ...

  3. pandas中一列含有多种数据类型的转换:科学计算法转浮点数、字符映射

    import pandas as pd import re def getNum(x): """ 科学计数法和字符转浮点数 """ if r ...

  4. 几个常用的SQL 时间函数

    --当月第一天declare @startFirstDate datetimeset @startFirstDate=dateadd(dd,datediff(dd,0,getdate()),-day( ...

  5. FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. com/mongodb/util/JSON

    问题: 将MongoDB数据导入Hive,按照https://blog.csdn.net/thriving_fcl/article/details/51471248文章,在hive建外部表与mongo ...

  6. 微信小程序:block的隐藏

    <block/> 并不是一个组件,它仅仅是一个包装元素,不会在页面中做任何渲染,只接受控制属性. 所以 hidden.display等通用隐藏元素的方法对block是无效的 想要隐藏blo ...

  7. Matplotlib模块

    不求甚解,不断学习不断添加... 2017.10.26 1.绘制简单的图像 # 第一步创建显示画面,figure('show')指定图表名称 plt.figure('data') #绘制图像--> ...

  8. spring mvc 文件上传 ajax 异步上传

    异常代码: 1.the request doesn't contain a multipart/form-data or multipart/mixed stream, content type he ...

  9. 学生管理系统.c

    直接贴代码了 另有:python调用c程序的实现 #define _CRT_SECURE_NO_WARNINGS #include<iostream> using namespace st ...

  10. 通俗理解caller和callee

    caller 返回一个调用当前函数的引用: callee 返回一个正在被执行函数的引用: 举个例子: 当前有函数 a() 直接使用了caller 方法: b() 直接使用了callee方法: ca() ...