先看下效果图:

# 先调入需要的模块

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import seaborn as sb # 生成几个数据点 data = np.array([
[0.1, 0.7],
[0.3, 0.6],
[0.4, 0.1],
[0.5, 0.4],
[0.8, 0.04],
[0.42, 0.6],
[0.9, 0.4],
[0.6, 0.5],
[0.7, 0.2],
[0.7, 0.67],
[0.27,0.8],
[0.5, 0.72]
]) target = [1] * 6 + [0] * 6 x_line = np.linspace(0, 1, 100)
y_line = 1 - x_line
plt.scatter(data[:6, 0], data[:6, 1], marker='o', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', s=100, lw=3)
plt.plot(x_line, y_line) # 定义计算域、文字说明等 C = 0.0001 # SVM regularization parameter, since Scikit-learn doesn't allow C=0
# linear_svc = svm.SVC(kernel='linear', C=C).fit(data, target) # create a mesh to plot in
h = 0.002
x_min, x_max = data[:, 0].min() - 0.2, data[:, 0].max() + 0.2
y_min, y_max = data[:, 1].min() - 0.2, data[:, 1].max() + 0.2
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h)) # title for the plots
titles = ['SVC with linear kernel',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel'] # RBF Kernel plt.figure(figsize=(16, 15)) for i, gamma in enumerate([1, 5, 15, 35, 45, 55]):
rbf_svc = svm.SVC(kernel='rbf', gamma=gamma, C=C).fit(data, target) # ravel - flatten
# c_ - vstack
# #把后面两个压扁之后变成了x1和x2,然后进行判断,得到结果在压缩成一个矩形
Z = rbf_svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) plt.subplot(3, 2, i + 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.contourf(xx, yy, Z, cmap=plt.cm.ocean, alpha=0.6) # Plot the training points
plt.scatter(data[:6, 0], data[:6, 1], marker='o', color='r', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', color='k', s=100, lw=3) plt.title('RBF SVM with $\gamma=$' + str(gamma)) plt.show()

【364】SVM 通过 sklearn 可视化实现的更多相关文章

  1. SVM的sklearn实现

    转载:豆-Metcalf 1)SVM-LinearSVC.ipynb-线性分类SVM,iris数据集分类,正确率100% """ 功能:实现线性分类支持向量机 说明:可以 ...

  2. SVM的sklearn.svm.SVC实现与类参数

    SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...

  3. sklearn 可视化模型的训练测试收敛情况和特征重要性

    show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test ...

  4. 机器学习之sklearn——SVM

    sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...

  5. sklearn调参(验证曲线,可视化不同参数下交叉验证得分)

     一 . 原始方法: 思路: 1. 参数从 0+∞ 的一个 区间 取点, 方法如: np.logspace(-10, 0, 10) , np.logspace(-6, -1, 5) 2. 循环调用cr ...

  6. [Example of Sklearn] - SVM usge

    reference : http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine SVM是什么? SVM是一种训练机器 ...

  7. 支持向量机SVM知识梳理和在sklearn库中的应用

    SVM发展史 线性SVM=线性分类器+最大间隔 间隔(margin):边界的活动范围.The margin of a linear classifier is defined as the width ...

  8. 支持向量机SVM——专治线性不可分

    SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...

  9. 机器学习-Sklearn

    Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regres ...

随机推荐

  1. ORA-22922: 不存在的 LOB 值 可以使用外层嵌套wm_concat()解决

    select kw0408id, sjbh, ksrs, kch, to_char(wm_concat(kcmc)) as kcmc, ksxs, kssc, ksfs, kcxz, xsyx, nj ...

  2. 00006 - Linux中使用export命令设置环境变量

    功能说明:设置或显示环境变量. #################################################################################### ...

  3. 【 MAKEFILE 编程基础之四】详解MAKEFILE 函数的语法与使用!

    本站文章均为 李华明Himi 原创,转载务必在明显处注明: 转载自[黑米GameDev街区] 原文链接: http://www.himigame.com/gcc-makefile/771.html   ...

  4. Android 硬编码

    public class TextViewActivity extends Activity { // 声明TextView对象 private TextView textView; @Overrid ...

  5. cocos源码分析--ClippingNode绘图原理

    在OpenGL 绘制过程中,与帧缓冲有关的是模版,深度测试,混合操作.模版测试使应用程序可以定义一个遮罩,在遮罩内的片段将被保留或者丢弃,在遮罩外的片段操作行为则相反.深度测试用来剔除那些被场景遮挡的 ...

  6. HBase的Shell命令和JavaAPI

    HBase的shell操作和JavaAPI的使用: Shell 表操作 创建表 create 'student','info' #表名 列族 插入表 put 'student','1001','inf ...

  7. Java - 29 Java 序列化

    Java 提供了一种对象序列化的机制,该机制中,一个对象可以被表示为一个字节序列,该字节序列包括该对象的数据.有关对象的类型的信息和存储在对象中数据的类型. 将序列化对象写入文件之后,可以从文件中读取 ...

  8. SMP、NUMA、MPP体系结构介绍

    从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构 (SMP : Symmetric Multi-Processor) ,非一致存储访问结构 (NUMA : Non-Uniform ...

  9. Django之Django debug toolbar调试工具

    一.安装Django debug toolbar调试工具 pip3 install django-debug-toolbar 如果出错命令为 pip install django_debug_tool ...

  10. angularjs的路由ui.router

      <!-- 引入路由插件 --> <script src="vendor/angular-ui-router/release/angular-ui-router.min. ...