先看下效果图:

# 先调入需要的模块

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import seaborn as sb # 生成几个数据点 data = np.array([
[0.1, 0.7],
[0.3, 0.6],
[0.4, 0.1],
[0.5, 0.4],
[0.8, 0.04],
[0.42, 0.6],
[0.9, 0.4],
[0.6, 0.5],
[0.7, 0.2],
[0.7, 0.67],
[0.27,0.8],
[0.5, 0.72]
]) target = [1] * 6 + [0] * 6 x_line = np.linspace(0, 1, 100)
y_line = 1 - x_line
plt.scatter(data[:6, 0], data[:6, 1], marker='o', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', s=100, lw=3)
plt.plot(x_line, y_line) # 定义计算域、文字说明等 C = 0.0001 # SVM regularization parameter, since Scikit-learn doesn't allow C=0
# linear_svc = svm.SVC(kernel='linear', C=C).fit(data, target) # create a mesh to plot in
h = 0.002
x_min, x_max = data[:, 0].min() - 0.2, data[:, 0].max() + 0.2
y_min, y_max = data[:, 1].min() - 0.2, data[:, 1].max() + 0.2
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h)) # title for the plots
titles = ['SVC with linear kernel',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel'] # RBF Kernel plt.figure(figsize=(16, 15)) for i, gamma in enumerate([1, 5, 15, 35, 45, 55]):
rbf_svc = svm.SVC(kernel='rbf', gamma=gamma, C=C).fit(data, target) # ravel - flatten
# c_ - vstack
# #把后面两个压扁之后变成了x1和x2,然后进行判断,得到结果在压缩成一个矩形
Z = rbf_svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) plt.subplot(3, 2, i + 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.contourf(xx, yy, Z, cmap=plt.cm.ocean, alpha=0.6) # Plot the training points
plt.scatter(data[:6, 0], data[:6, 1], marker='o', color='r', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', color='k', s=100, lw=3) plt.title('RBF SVM with $\gamma=$' + str(gamma)) plt.show()

【364】SVM 通过 sklearn 可视化实现的更多相关文章

  1. SVM的sklearn实现

    转载:豆-Metcalf 1)SVM-LinearSVC.ipynb-线性分类SVM,iris数据集分类,正确率100% """ 功能:实现线性分类支持向量机 说明:可以 ...

  2. SVM的sklearn.svm.SVC实现与类参数

    SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...

  3. sklearn 可视化模型的训练测试收敛情况和特征重要性

    show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test ...

  4. 机器学习之sklearn——SVM

    sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...

  5. sklearn调参(验证曲线,可视化不同参数下交叉验证得分)

     一 . 原始方法: 思路: 1. 参数从 0+∞ 的一个 区间 取点, 方法如: np.logspace(-10, 0, 10) , np.logspace(-6, -1, 5) 2. 循环调用cr ...

  6. [Example of Sklearn] - SVM usge

    reference : http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine SVM是什么? SVM是一种训练机器 ...

  7. 支持向量机SVM知识梳理和在sklearn库中的应用

    SVM发展史 线性SVM=线性分类器+最大间隔 间隔(margin):边界的活动范围.The margin of a linear classifier is defined as the width ...

  8. 支持向量机SVM——专治线性不可分

    SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...

  9. 机器学习-Sklearn

    Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regres ...

随机推荐

  1. Java 问题集

    1.命令行编译.java文件,找不到或者无法加载主类,需要配置完整的PATH,CLASSPATH环境变量,CLASSPATH最前面是 点+分号 PATH=%JAVA_HOME%\binCLASSPAT ...

  2. Ext.NET Combobox实现数据源静态配置

    背景 项目中使用增值税税率, 需求原本是统一的指定税率, 譬如3% 5% 等固定的. 随着业务增加, 发现不同业务有不同的税率, 一会加一个, 一下要改很多个界面. 就想着放到统一的地方. 技术背景 ...

  3. Java基础方面

    1.作用域public,private,protected,以及不写时的区别 答:区别如下: 作用域        当前类     同一package       子孙类     其他package ...

  4. 微服务、SOA 和 API对比与分析

    摘要: 对比微服务架构和面向服务的架构(SOA)是一个敏感的话题,常常引起激烈的争论.本文将介绍这些争论的起源,并分析如何以最佳方式解决它们.然后进一步查看这些概念如何与 API 管理概念结合使用,实 ...

  5. 把自己的代码发布到npm(npm publish)

    写了代码如何发布到npm包? 示例 demo1 demo2 1.注册npm账号 在npm官网注册https://www.npmjs.com/注意邮箱要验证,会发送验证链接到你的注册邮箱,没有验证的话是 ...

  6. 将浏览器的内容复制到Linux的文件里面

    直接使用ctrl +c 复制的内容  用ctr +V贴入Linux系统文件的话,格式是乱的 可以使用EOF的方式 [root@centos7 ~]# cat <<EOF >tttt. ...

  7. (二)apache atlas配置和运行

    上一篇文章,我们已经构建出了altas的安装包,所以我们继续使用安装包配置和运行atlas 首先解压atlas压缩包,授予bin目录下的执行权限 1.默认启动atlas cd atlas/bin/ p ...

  8. 判断B是不是A的子结构

    题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构)   解答: class Solution:    def HasSubtree(self, pRo ...

  9. 如何利用Social Listening从社会化媒体中“提炼”有价值的信息?

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 在本文中,笔者将会介绍大数据分析主要的处对象---社会化媒 ...

  10. python学习笔记_week13

    一.前景介绍 到目前为止,很多公司对堡垒机依然不太感冒,其实是没有充分认识到堡垒机在IT管理中的重要作用的,很多人觉得,堡垒机就是跳板机,其实这个认识是不全面的,跳板功能只是堡垒机所具备的功能属性中的 ...