TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 13262   Accepted: 6412

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 
 
/*
poj 2318 叉积+二分 一个矩形,有被若干直线分成N个格子,给出一个点的坐标,问你该点位于哪个点中。
知识点:其实就是点在凸四边形内的判断,若利用叉积的性质,可以二分求解。 叉积的结果也是一个向量,是垂直于向量a,b所形成的平面,如果看成三维坐标的话是在 z 轴上,上面结果是它的模。
方向判定:右手定则,(右手半握,大拇指垂直向上,四指右向量a握向b,大拇指的方向就是叉积的方向)
叉积的意义:
1:其结果是a和b为相邻边形成平行四边形的面积。
2:结果有正有负,有sin(a,b)可知和其夹角有关,夹角大于180°为负值。
本题可以通过叉积的正负来判断它在直线的哪边 hhh-2016-05-04 19:49:26
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
const int maxn = 40010;
int tot;
int mod;
int n,m;
int x1,x2,y1,y2; struct Point
{
int x,y;
Point() {}
Point(int _x,int _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
int operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
};
int tans[maxn];
Line line[maxn];
Point p;
int cal(int mid)
{
return (line[mid].t-p)^(line[mid].s-p);
} int main()
{
int flag = 1;
while(scanf("%d",&n) && n)
{
if(!flag)
printf("\n");
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
flag = 0;
line[n] = Line(Point(x2,y1),Point(x2,y2));
memset(tans,0,sizeof(tans));
for(int i = 0; i < n; i++)
{
scanf("%d%d",&x1,&x2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
while(m--)
{
scanf("%d%d",&x1,&y1);
int l = 0, r = n;
int mid,ans;
p = Point(x1,y1);
while(l <= r)
{
mid = (l+r)>>1;
if(cal(mid) > 0)
{
ans = mid;
r = mid-1;
}
else
{
l = mid+1;
}
}
tans[ans]++;
}
for(int i = 0; i <= n; i++)
{
printf("%d: %d\n",i,tans[i]);
}
}
return 0;
}

  

poj 2318 叉积+二分的更多相关文章

  1. POJ 2318 叉积判断点与直线位置

    TOYS   Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom ...

  2. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  3. POJ 2318 (叉积) TOYS

    题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...

  4. poj 2318(叉积判断点在线段的哪一侧)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13120   Accepted: 6334 Description ...

  5. POJ 2318 TOYS | 二分+判断点在多边形内

    题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...

  6. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

  7. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. 《Language Implementation Patterns》之访问&重写语法树

    每个编程的人都学习过树遍历算法,但是AST的遍历并不是开始想象的那么简单.有几个因素会影响遍历算法:1)是否拥有节点的源码:2)是否子节点的访问方式是统一的:3)ast是homogeneous或het ...

  2. 《高级软件测试》JIRA使用手册(一)JIRA基本情况

    JIRA 官方网站为:https://www.atlassian.com/software/jira 中文代理网站为:https://www.jira.cn 现版本:v7.3.0 Atlassian公 ...

  3. python解释NTFS runlist的代码(文章转自北亚数据恢复张宇工程师)

    代码如下: 执行效果如下:root@zhangyu-VirtualBox:~/NTFS-5# python3 read_runlist.py mft_source.img ***参数数量或格式错误! ...

  4. ExtJs6级联combo的实现

    父类获取子类进行操作 { xtype: 'combo', store: Common.Dic.getDicData("IMAGE_BIG_TYPE") , multiSelect: ...

  5. python基础学习篇章一

    一. 对Python的认识 1. Python的标准实现方式是将源代码的语句编译为字节码的形式,之后再将字节码解释出来.由于字节码是一种与平台无关的形式,字节码具有可移植性.但是Python没有将代码 ...

  6. sts中maven

    建立一个maven web的工程 网上有很多关于maven的下载,配置等,我这里就不多说了. 下面介绍主要介绍关于在sts中建立一个maven时最开始出现的错误问题. 创建maven工程 file-& ...

  7. 整理一下 System.Linq.Enumerable 类中的那些比较少用的方法

    Linq 虽然用得多,但是里面有一些方法比较少用,因此整理一下.Enumerable 类的所有方法可以在 MSDN 上查阅到:https://msdn.microsoft.com/zh-cn/libr ...

  8. margin-top塌陷

    margin-top 塌陷 在两个不浮动的盒子嵌套时候,内部的盒子设置的margin-top会加到外边的盒子上,导致内部的盒子margin-top设置失败,解决方法如下: 1.外部盒子设置一个边框: ...

  9. 【WebGL入门】画一个旋转的cube

    最近搜罗了各种资料,发现WebGL中文网特别好用,很适合新手入门:http://www.hewebgl.com/article/getarticle/50 只需要下载好需要的所有包,然后用notepa ...

  10. POJ-1068 Parencodings---模拟括号的配对

    题目链接: https://vjudge.net/problem/POJ-1068 题目大意: 给出一种括号序列的表示形式名叫P序列,规则是统计出每个右括号之前的左括号个数作为序列每项的值.然后要求你 ...