TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 13262   Accepted: 6412

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
 
 
/*
poj 2318 叉积+二分 一个矩形,有被若干直线分成N个格子,给出一个点的坐标,问你该点位于哪个点中。
知识点:其实就是点在凸四边形内的判断,若利用叉积的性质,可以二分求解。 叉积的结果也是一个向量,是垂直于向量a,b所形成的平面,如果看成三维坐标的话是在 z 轴上,上面结果是它的模。
方向判定:右手定则,(右手半握,大拇指垂直向上,四指右向量a握向b,大拇指的方向就是叉积的方向)
叉积的意义:
1:其结果是a和b为相邻边形成平行四边形的面积。
2:结果有正有负,有sin(a,b)可知和其夹角有关,夹角大于180°为负值。
本题可以通过叉积的正负来判断它在直线的哪边 hhh-2016-05-04 19:49:26
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
const int maxn = 40010;
int tot;
int mod;
int n,m;
int x1,x2,y1,y2; struct Point
{
int x,y;
Point() {}
Point(int _x,int _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
int operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
};
int tans[maxn];
Line line[maxn];
Point p;
int cal(int mid)
{
return (line[mid].t-p)^(line[mid].s-p);
} int main()
{
int flag = 1;
while(scanf("%d",&n) && n)
{
if(!flag)
printf("\n");
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
flag = 0;
line[n] = Line(Point(x2,y1),Point(x2,y2));
memset(tans,0,sizeof(tans));
for(int i = 0; i < n; i++)
{
scanf("%d%d",&x1,&x2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
while(m--)
{
scanf("%d%d",&x1,&y1);
int l = 0, r = n;
int mid,ans;
p = Point(x1,y1);
while(l <= r)
{
mid = (l+r)>>1;
if(cal(mid) > 0)
{
ans = mid;
r = mid-1;
}
else
{
l = mid+1;
}
}
tans[ans]++;
}
for(int i = 0; i <= n; i++)
{
printf("%d: %d\n",i,tans[i]);
}
}
return 0;
}

  

poj 2318 叉积+二分的更多相关文章

  1. POJ 2318 叉积判断点与直线位置

    TOYS   Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom ...

  2. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  3. POJ 2318 (叉积) TOYS

    题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...

  4. poj 2318(叉积判断点在线段的哪一侧)

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13120   Accepted: 6334 Description ...

  5. POJ 2318 TOYS | 二分+判断点在多边形内

    题意: 给一个矩形的区域(左上角为(x1,y1) 右下角为(x2,y2)),给出n对(u,v)表示(u,y1) 和 (v,y2)构成线段将矩形切割 这样构成了n+1个多边形,再给出m个点,问每个多边形 ...

  6. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

  7. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. 201621123057 《Java程序设计》第8周学习总结

    1. 本周学习总结 思维导图归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 ArrayList是允许重复的,但当用它来 ...

  2. Python 实现火车票查询工具

    注意:由于 12306 的接口经常变化,课程内容可能很快过期,如果遇到接口问题,需要根据最新的接口对代码进行适当修改才可以完成实验. 一.实验简介 当你想查询一下火车票信息的时候,你还在上 12306 ...

  3. JAVA类的方法调用和变量(全套)

    一.类的分类: 1.普通类 2.抽象类(含有抽象方法的类) 3.静态类(不需要实例化,就可以使用的类) 二.方法的分类: 1.私有方法(只有类的内部才可以访问的方法) 2.保护方法(只有类的内部和该该 ...

  4. SSO的全方位解决方案 - Kerberos协议(RFC 1510)

    一.桌面SSO和WEB-SSO的局限性 前面我们的解决方案(桌面SSO和WEB-SSO)都有一个共性:要想将一个应用集成到我们的SSO解决方案中,或多或少的需要修改应用程序. Web应用需要配置一个我 ...

  5. Spring MVC拦截器的配置

    最近在用SpringMVC,想用它的拦截器,但是配置了几次都不成功了,最后翻阅了不少文章终于成功了,遂记录于此,以方便他人. 首先引入命名空间: xmlns:mvc="http://www. ...

  6. ibatis的优缺点及可行性分析

    1.优点 简单: 易于学习,易于使用,通过文档和源代码,可以比较完全的掌握它的设计思路和实现. 实用: 提供了数据映射功能,提供了对底层数据访问的封装(例如ado.net),提供了DAO框架,可以使我 ...

  7. BBS的登陆——发帖——回帖

    整体分析思路 1.首先手工熟悉一遍业务流程 2.录制脚本,选取协议,设置录制选项 1)Run-Time-Settings——Preferences——Options设置3个超时 2)Recording ...

  8. JavaScript中Global、Math、Date对象的常用方法

    JavaScript当中Global.Math.Date类型常用方法如下: /* js 中 Global对象 是一个不存在的对象,它里面的方法可以调用 常用方法: 1 encodeURI 对uri进行 ...

  9. Hive:把一段包含中文的sql脚本粘贴到beeline client运行中文乱码

    背景: 在做项目过程中不可能hive表中都是非中文字段.在最近做的项目中就遇到需要在beeline界面上执行查询脚本,但脚本中包含中文,正常一个脚本用文本写好后,粘贴到beeline窗口运行时,发现中 ...

  10. POJ-1122 FDNY to the Rescue!---Dijkstra+反向建图

    题目链接: https://vjudge.net/problem/POJ-1122 题目大意: 给出矩阵,矩阵中每个元素tij表示从第i个交叉路口到第j个交叉路口所需时间,若tij为-1则表示两交叉路 ...