4727: [POI2017]Turysta

Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special Judge
Submit: 117  Solved: 39
[Submit][Status][Discuss]

Description

给出一个n个点的有向图,任意两个点之间有且仅一条有向边。对于每个点v,求出从v出发的一条经过点数最多,
且没有重复经过同一个点两次以上的简单路径。

Input

第一行包含一个正整数n(2<=n<=2000),表示点数。接下来n-1行,其中的第i行有i-1个数,如果第j个数是1,那么
表示有向边j->i+1,如果是0,那么表示有向边j<-i+1。

Output

输出n行,第i行首先包含一个正整数k,表示从i点出发的最优路径所经过的点数,接下来k个正整数,依次表示路
径上的每个点。若有多组最优解,输出任意一组。

Sample Input

4
1
1 1
1 0 1

Sample Output

4 1 2 3 4
3 2 3 4
3 3 4 2
3 4 2 3

HINT

Source

鸣谢Claris上传

分析:

这是一张有向完全图也就是竞赛图...

No.1 竞赛图一定存在一条哈密顿路径

我们可以构法证明,详细证明请移步这里

No.2 强联通的竞赛图一定存在一条哈密顿回路

依旧是构造法证明,构造方法如下:

首先,我们求出这个强联通分量的哈密顿路径,然后把路径变成环,然后考虑扩大环的大小...

把路径变成环就不用说了,一定存在一个环...

然后考虑下面的几种情况:

6代表的是链上离环最近的点

1、存在一条6->1的路径,直接连上就好(这个和第二种情况的区别就是5这个点是环和链的连接点,第二种情况是环上任意点,本质上是一样的,但是代码实现有一些区别...)

2、存在一条x->6->nxt[x]的路径

3、6不指向环上任何一个点,这时候一定存在链上其他的点指向环上(因为这个图是强联通的),比如说存在一条7->2的路径,那么新的环就是1->6->7->2->3->4->5->1

这样我们就构造除了一个强联通竞赛图的哈密顿回路...

我们把给出的竞赛图缩点,每个点是一个强联通分量,这就变成了一张DAG,每个强联通分量中找出一个哈密顿回路,那么发现不管从哪个点进入强联通分量都可以遍历这个环然后到达这个强联通分量指向的下一个强联通分量,因为这个强联通分量里的每个点都存在指向下一个强联通分量的边,否则这个和下一个就强联通了...

所以我们DP计算出从这个点出发所能找到的最长的路径...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=2000+5; int n,tail,G[maxn][maxn],M[maxn][maxn],ans[maxn],que[maxn],siz[maxn],node[maxn],can[maxn];
int C,tim,top,mp[maxn],dfn[maxn],low[maxn],stk[maxn],vis[maxn],instk[maxn],f[maxn],nt[maxn],nxt[maxn]; inline void push(int x){
vis[x]=1;
for(int i=1;i<=tail;i++)
if(G[que[i]][x])
can[que[i]]=1;
} inline void find(void){
int l=que[1],r=que[1];
for(int i=2;i<=tail;i++){
int x=que[i];
if(G[x][l])
nxt[x]=l,l=x;
else{
for(int now=l,last=0;;last=now,now=nxt[now]){
if(last==r){
nxt[r]=x;r=x;
break;
}
else if(G[x][now]){
nxt[last]=x;
nxt[x]=now;
break;
}
}
}
}
int d=l;push(l);
while(d!=r){
int x=nxt[d];
if(G[x][l])
d=x,push(x);
else{
for(int now=l,last=0;;last=now,now=nxt[now]){
if(G[x][now]){
nxt[last]=x;
nxt[d]=l;
d=x;l=now;
push(x);
break;
}
else if(last==d){
int nownode,t;
for(int i=1;i<=tail;i++)
if(!vis[que[i]]&&can[que[i]]){
nownode=que[i];
break;
}
for(int i=l;;i=nxt[i])
if(G[nownode][i]||i==d){
t=i;
break;
}
for(int i=nxt[d];;i=nxt[i]){
push(i);
if(i==nownode)
break;
}
nxt[d]=l,l=t,d=nownode;
for(int now=l;;now=nxt[now])
if(nxt[now]==t){
nxt[now]=x;
break;
}
break;
}
}
}
}
nxt[r]=l;
for(int i=1;i<=tail;i++)
vis[que[i]]=can[que[i]]=0;
} inline void tarjan(int root){
dfn[root]=low[root]=++tim,stk[++top]=root,instk[root]=1;
for(int i=1;i<=n;i++)
if(G[root][i]){
if(!dfn[i])
tarjan(i),low[root]=min(low[root],low[i]);
else if(instk[i])
low[root]=min(low[root],dfn[i]);
}
if(dfn[root]==low[root]){
C++;node[C]=root;tail=0;int tmp;
do{
tmp=stk[top--];instk[tmp]=0;mp[tmp]=C;siz[C]++;que[++tail]=tmp;
}while(tmp!=root);
find();
}
} inline int dp(int x){
if(f[x])
return f[x];
for(int i=1,tmp;i<=C;i++)
if(i!=x&&M[x][i]){
tmp=dp(i);
if(f[x]<tmp)
f[x]=tmp,nt[x]=i;
}
f[x]+=siz[x];
return f[x];
} inline void print(int x){
if(x){
printf(" %d",x);
for(int i=nxt[x];i!=x;i=nxt[i])
printf(" %d",i);
print(node[nt[mp[x]]]);
}
} signed main(void){
scanf("%d",&n);
for(int j=2;j<=n;j++)
for(int i=1;i<j;i++)
scanf("%d",&G[i][j]),G[j][i]=G[i][j]^1;
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(G[i][j]&&mp[i]!=mp[j])
M[mp[i]][mp[j]]=1;
for(int i=1;i<=C;i++)
dp(i);
for(int i=1;i<=n;i++)
printf("%d",f[mp[i]]),print(i),puts("");
return 0;
}

  


By NeighThorn

BZOJ 4727: [POI2017]Turysta的更多相关文章

  1. BZOJ.4727.[POI2017]Turysta(哈密顿路径/回路 竞赛图)

    题目链接 \(Description\) 给出一个n个点的有向图,任意两个点之间有且仅一条有向边.对于每个点v,求出从v出发的一条经过点数最多,且没有重复经过同一个点一次以上的简单路径. n<= ...

  2. bzoj千题计划232:bzoj4727: [POI2017]Turysta

    http://www.lydsy.com/JudgeOnline/problem.php?id=4727 竞赛图tarjan缩点后得到的拓扑图一定是一条链 因为竞赛图任意两点的前后顺序确定,只有一种拓 ...

  3. BZOJ 4726: [POI2017]Sabota?

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 301  Solved ...

  4. BZOJ 4726: [POI2017]Sabota? 树形dp

    4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...

  5. bzoj 4725 [POI2017]Reprezentacje ró?nicowe 暴力

    [POI2017]Reprezentacje ró?nicowe Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 141  Solved: 67[Sub ...

  6. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  7. bzoj 4723 [POI2017]Flappy Bird 模拟

    [POI2017]Flappy Bird Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 482  Solved: 196[Submit][Status ...

  8. BZOJ 4725: [POI2017]Reprezentacje ró?nicowe

    Description 一个数列. \(a_1=1,a_2=2\) 当 \(n>2\) 时 \[a_n = \{  \begin {matrix} 2a_{n-1},\text{n is an ...

  9. BZOJ 4724: [POI2017]Podzielno

    Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...

随机推荐

  1. listview 与 button 焦点 在item添加下列属性

    android:descendantFocusability="blocksDescendants" http://zhaojianping.blog.51cto.com/7251 ...

  2. JDBC操作数据库的三种方式比较

    JDBC(java Database Connectivity)java数据库连接,是一种用于执行上sql语句的javaAPI,可以为多种关系型数据库提供统一访问接口.我们项目中经常用到的MySQL. ...

  3. linux系统命令学习系列-用户切换命令su,sudo

    先复习一下上节内容: 用户组添加groupadd 用户组修改groupmod 用户组删除groupdel 作业创建一个id为501的组group1,然后改成group2, 同时id变为502,最后删除 ...

  4. C 函数指针与回调函数

    函数指针是指向函数的指针变量. 通常我们说的指针变量是指向一个整型.字符型或数组等变量,而函数指针是指向函数. 函数指针可以像一般函数一样,用于调用函数.传递参数. 函数指针变量的声明: #inclu ...

  5. 算法题丨3Sum Closest

    描述 Given an array S of n integers, find three integers in S such that the sum is closest to a given ...

  6. LxmlLinkExtractor类参数解析

    LxmlLinkExtractor LxmlLinkExtractor 是一种强大的链接提取器,使用他能很方便的进行选项过滤,他是通过xml中强大的HTMLParser实现的 源代码如下: class ...

  7. 新概念英语(1-9)How is Ema?

    A:Hello Helen. B:Hi Steven. A:How are you today? B:I'm very well, thank you. And you? A:I'm fine tha ...

  8. OAuth2.0学习(1-1)OAuth2.0是什么?

    目前很多开放平台如新浪微博开放平台都在使用提供开放API接口供开发者使用,随之带来了第三方应用要到开放平台进行授权的问题 OAuth就是用于为第三方应用授权访问用户的资源应用的. 目前有OAuth1. ...

  9. .NET:持续进化的统一开发平台

    阅读文本大概需要 8 分钟. 标题使用的是进化这个词语,是因为 .NET 在不断的努力,也在不断的重构. 这篇文章的更多目的和意义在于科普,俗称"传教". # 持续进化的 .NET ...

  10. C#日志文件

    写日志文件是一个很常用的功能,以前都是别人写好的,直接调用的,近期写了一个小工具,因为比较小,所以懒得引用dll文件了,直接上网找了一个,很方便,现在记录下 public class LogClass ...