Treap讲解
Treap讲解
上一篇blog提出了Treap这个算法,在这里我就要详细讲解。
首先,我们可以从字面上理解这个算法,Treap这个单词是由Tree和Heap两个单词构成的,所以它的性质就很好理解了,明显就是同时满足Tree和Heap两个算法的性质,那么Tree是什么呢?
Heap又是什么呢?Tree是BST,而Heap是堆,如果这两个算法不懂的话可以先学习一下,因为Treap是在这两个算法的基础上产生的,BST可以看我的上一篇博客,而Heap就只能再找了,本人比较懒,没有写,见谅。
好了言归正传,如何将BST的性质和Heap的性质结合在一起呢?似乎比较简单,我们可以在BST的基础上再开一个数组,来进行维护堆的性质,这个数组我们可以随意赋值,但是整体的数需要满足堆的性质(如左下图)。在图中的树就明显满足,val的排序方式是按照BST,而ord的排序方式是按照小根堆。这样的性质就十分靠谱,因为我每次堆ord的赋值是随机的,所以不论插入的顺序是什么,我们都可以完美的解决危机。现在问题来了,插入时找到节点了,也赋完值了,但是突然发现不满足Heap的性质了(如右下图),怎么办?


这个时候,我们就可以引出Treap的核心部分,左旋和右旋。首先讲右旋,当当前节点的左儿子的ord小于自己的时候,我们可以进行这个操作,如下图,经过这样一个小小的变换,性质就有满足了,这个转换比较好实现,我们可以直接对节点的儿子编号进行修改还就好了。

void rturn(int &p)
{
int tmp=lson[p];
lson[p]=rson[tmp],rson[tmp]=p;
p=tmp;
}
//lson[p]记录p号节点的左儿子的编号
//rson[p]记录p号节点的右儿子的编号
右旋
void lturn(int &p)
{
int tmp=rson[p];
rson[p]=lson[tmp],lson[tmp]=p;
p=tmp;
}
//lson[p]记录p号节点的左儿子的编号
//rson[p]记录p号节点的右儿子的编号
左旋
这是两个基本操作,只要写treap就需要用到。下面讲解一下基本操作:添加,单点删除。
添加:添加操作比较简单,首先找到只满足BST性质的位置,将其添加进Treap中,如果这是一个新节点,我们可以在上面赋值ord,这是一个随机的数值,之后就可以回溯了。当每一次回溯的时候,我们需要判断一下,是否需要左旋或者右旋,即可,是不是很简单?
void add(int &p,int number)
{
if(!p)
{
p=++idx,ct[p]=,val[p]=number;
size[p]=,ord[p]=rand();
return;
}
size[p]++;
if(val[p]==number) ct[p]++;
else if(np<number)
add(rson[p],number);
else if(np>number)
add(lson[p],number);
if(ord[rson[p]]<ord[p]) lturn(p);
if(ord[lson[p]]<ord[p]) rturn(p);
}
//ct[p]记录p号节点出现的次数
//lson[p]记录p号节点的左儿子的编号
//rson[p]记录p号节点的右儿子的编号
//val[p]记录p号节点的权值
//ord[p]记录p号节点的随机值
//size[p]记录以p号节点为根的子树的大小
//number是要插入的权值
添加
单点删除:我们首先需要查询到当前点,如果当前点的ct>1,我们可以直接ct--,如果不是,我们需要把它旋到最下面,每一次旋转都是把自己的左儿子和右儿子中ord小的点旋上来,直到把要删除的节点旋到最下面为止,直接删去它和它父亲的连边就好了。当然,有时候会出现一种情况,就是旋到当前节点只有左儿子或者右儿子,直接把当前节点的儿子提上来就好了(如图)(注:这张图片来自http://www.cnblogs.com/huangxincheng/archive/2012/07/30/2614484.html,本人较懒,就不用画图画了)

void del(int &p,int number)
{
if(!p) return;
if(val[p]==number)
{
if(ct[p]>)
{
ct[p]--,size[p]--;
return;
}
if(lson[p]*rson[p]==) p=lson[p]+rson[p];
else if(ord[lson[p]]<ord[rson[p]])
rturn(p),del(p,number);
else if(ord[rson[p]]<=ord[lson[p]])
lturn(p),del(p,number);
return;
}
size[p]--;
if(val[p]<number)
del(rson[p],number);
else del(lson[p],number);
}
//ct[p]记录p号节点出现的次数
//lson[p]记录p号节点的左儿子的编号
//rson[p]记录p号节点的右儿子的编号
//val[p]记录p号节点的权值
//ord[p]记录p号节点的随机值
//size[p]记录以p号节点为根的子树的大小
//number是要插入的权值
删除
大致就是这样,不会的可以评论发问题,我会解答。
Treap讲解的更多相关文章
- 我学到的treap
到目前为止,平衡树应该是我学过的数据结构里面最难的一个了.(顺便贴上一个我认为treap讲解的比较好的博客https://blog.csdn.net/u014634338/article/detail ...
- 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)
在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...
- 「模板」「讲解」Treap名次树
Treap实现名次树 前言 学平衡树的过程可以说是相当艰难.浏览Blog的过程中看到大量指针版平衡树,不擅长指针操作的我已经接近崩溃.于是,我想着一定要写一篇非指针实现的Treap的Blog. 具体如 ...
- Treap 模板 poj1442&hdu4557
原理可以看hihocoder上面的讲解,很清楚,不多说了. 模板抄lrj训练指南上面的. /** Treap 实现 名次树 功能: 1.找到排名为k的元素 2.值为x的元素的名次 初始化:Node* ...
- [转载]无旋treap:从单点到区间(例题 BZOJ1500&NOI2005 维护数列 )
转自ZZH大佬,原文:http://www.cnblogs.com/LadyLex/p/7182631.html 1500: [NOI2005]维修数列 Time Limit: 10 Sec Mem ...
- [bzoj3173]最长上升子序列_非旋转Treap
最长上升子序列 bzoj-3173 题目大意:有1-n,n个数,第i次操作是将i加入到原有序列中制定的位置,后查询当前序列中最长上升子序列长度. 注释:1<=n<=10,000,开始序列为 ...
- BST讲解
BST 第一步,什么是BST,所谓BST就是满足一种特定性质的二叉树,这个性质一般情况是当前节点的权值比他的左子树的所有点的权值大,比他的右子树的所有点的权值小,满足这样性质的二叉树就称为BST,下面 ...
- Splay讲解
Splay讲解 Splay是平衡树的一种,是一种二叉搜索树,我们先讲解一下它的核心部分. Splay的核心部分就是splay,可能有些人会说什么鬼?这样讲解是不是太不认真了?两个字回答:不是.第一个S ...
- FHQ Treap小结(神级数据结构!)
首先说一下, 这个东西可以搞一切bst,treap,splay所能搞的东西 pre 今天心血来潮, 想搞一搞平衡树, 先百度了一下平衡树,发现正宗的平衡树写法应该是在二叉查找树的基础上加什么左左左右右 ...
随机推荐
- 使用localStorage保存搜索记录
//过滤一个结果的空记录添加,过滤空搜索 默认保存10条记录,自己可修改 function setHistoryItems(keyword) { keyword = keyword.replace(& ...
- Kali Linux下安装Nessus扫描器
一.官网下载Nessus(http://www.tenable.com/products/nessus/select-your-operating-system),这里需要查找自己对应的版本,如下图一 ...
- KVM之七:KVM克隆
1.在克隆虚拟机之前,必须先暂停或者停掉kvm 虚拟机.以虚拟机 snale 为例,先暂停虚拟机,如下 [root@kvm ~ ::]#virsh list Id 名称 状态 ------------ ...
- (译文)掌握JavaScript基础--理解this关键字的新思路
普通函数 下面这种就是普通函数 function add(x, y) { return x + y; } 每个普通函数被调用的时候,都相当于有一个this参数传进来. 内部函数this不会是外部函数传 ...
- 云计算--网络原理与应用--20171122--STP与HSRP
简单了解STP 学习HSRP 实验 一. 简单学习STP STP(spanning tree protocol)生成树协议,就是把一个环形的结构改变成一个树形的结构.通过一些算法,在逻辑上阻塞一些端 ...
- JavaScript(第二十二天)【动态加载js和css】
学习要点: 1.元素位置 2.动态脚本 3.动态样式 本章主要讲解上一章剩余的获取位置的DOM方法.动态加载脚本和样式. 一.元素位置 上一章已经通过几组属性可以获取元素所需的位置,那么这节课补充 ...
- 凡事预则立(Beta)
听说--凡事预则立 吸取之前alpha冲刺的经验教训,也为了这次的beta冲刺可以更好更顺利地进行,更是为了迎接我们的新成员玮诗.我们开了一次组内会议,进行beta冲刺的规划. 上一张我们的合照: 具 ...
- 转:运行page页面时的事件执行顺序及页面的回发与否深度了解
using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Secu ...
- 静态关键字static用法。
static的特点:1,static是一个修饰符,用于修饰成员.2,static修饰的成员被所有的对象所共享.3,static优先于对象存在,因为static的成员随着类的加载就已经存在了. 4,st ...
- var、let、const区别
1.let不存在变量提升,必须升明后才可用. 'use strict'; (function(){ console.log(varTest); console.log(letTest); var va ...