Pick-up sticks
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 12861   Accepted: 4847

Description

Stan has n sticks of various length. He throws them one at a time on the floor in a random way. After finishing throwing, Stan tries to find the top sticks, that is these sticks such that there is no stick on top of them. Stan has noticed that the last thrown stick is always on top but he wants to know all the sticks that are on top. Stan sticks are very, very thin such that their thickness can be neglected. 

Input

Input consists of a number of cases. The data for each case start with 1 <= n <= 100000, the number of sticks for this case. The following n lines contain four numbers each, these numbers are the planar coordinates of the endpoints of one stick. The sticks are listed in the order in which Stan has thrown them. You may assume that there are no more than 1000 top sticks. The input is ended by the case with n=0. This case should not be processed. 

Output

For each input case, print one line of output listing the top sticks in the format given in the sample. The top sticks should be listed in order in which they were thrown.

The picture to the right below illustrates the first case from input. 

Sample Input

5
1 1 4 2
2 3 3 1
1 -2.0 8 4
1 4 8 2
3 3 6 -2.0
3
0 0 1 1
1 0 2 1
2 0 3 1
0

Sample Output

Top sticks: 2, 4, 5.
Top sticks: 1, 2, 3.

Hint

Huge input,scanf is recommended.

Source


还是判断线段相交
注意两条线段共线的情况,用点积判断
太诡异从后往前暴力判断能过,用一个栈维护当前没有覆盖的线段也能过
但是最坏复杂度都是N^2啊???
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=1e5+;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double Dot(Vector a,Vector b){
return a.x*b.x+a.y*b.y;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}l[N];
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w));
}
bool isSSI(Line l1,Line l2){
Vector v1=l1.t-l1.s,v2=l2.t-l2.s;
if(sgn(Cross(v1,v2))==){
int flag=;
Vector u=l2.s-l1.s,w=l2.t-l1.s;
if(sgn(Dot(u,w))<) flag=;
u=l2.s-l1.t,w=l2.t-l1.t;
if(sgn(Dot(u,w))<) flag=;
return flag;
}
else return isLSI(l1,l2)&&isLSI(l2,l1);
} int n;
bool vis[N];
double x,y,x2,y2;
int main(int argc, const char * argv[]) {
while(true){
memset(vis,,sizeof(vis));
n=read(); if(n==) break;
for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf",&x,&y,&x2,&y2);
l[i]=Line(Point(x,y),Point(x2,y2));
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++) if(isSSI(l[j],l[i])){vis[i]=;break;}
}
printf("Top sticks: ");
int fir=;
for(int i=;i<=n;i++) if(!vis[i]){
if(fir) printf("%d",i),fir=;
else printf(", %d",i);
}
puts(".");
}
return ;
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=1e5+;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double Dot(Vector a,Vector b){
return a.x*b.x+a.y*b.y;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}l[N];
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w));
}
bool isSSI(Line l1,Line l2){
Vector v1=l1.t-l1.s,v2=l2.t-l2.s;
if(sgn(Cross(v1,v2))==){
int flag=;
Vector u=l2.s-l1.s,w=l2.t-l1.s;
if(sgn(Dot(u,w))<) flag=;
u=l2.s-l1.t,w=l2.t-l1.t;
if(sgn(Dot(u,w))<) flag=;
return flag;
}
else return isLSI(l1,l2)&&isLSI(l2,l1);
} int n,st[N],top;
inline void del(int p){
for(int i=p;i<=top;i++) st[i]=st[i+];top--;
}
double x,y,x2,y2;
int main(int argc, const char * argv[]) {
while(true){
top=;
n=read(); if(n==) break;
for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf",&x,&y,&x2,&y2);
l[i]=Line(Point(x,y),Point(x2,y2));
for(int j=;j<=top;j++) if(isSSI(l[st[j]],l[i])) del(j),j--;
st[++top]=i;
}
printf("Top sticks: %d",st[]);
for(int i=;i<=top;i++) printf(", %d",st[i]);
puts(".");
}
return ;
}

POJ 2653 Pick-up sticks [线段相交 迷之暴力]的更多相关文章

  1. 【POJ 2653】Pick-up sticks 判断线段相交

    一定要注意位运算的优先级!!!我被这个卡了好久 判断线段相交模板题. 叉积,点积,规范相交,非规范相交的简单模板 用了“链表”优化之后还是$O(n^2)$的暴力,可是为什么能过$10^5$的数据? # ...

  2. POJ 2653 Pick-up sticks(线段相交)

    题意:给定n个木棍依次放下,要求最终判断没被覆盖的木棍是哪些. 思路:快速排斥以及跨立实验可以判断线段相交. #include<algorithm> #include<cstdio& ...

  3. POJ 1066 Treasure Hunt (线段相交)

    题意:给你一个100*100的正方形,再给你n条线(墙),保证线段一定在正方形内且端点在正方形边界(外墙),最后给你一个正方形内的点(保证不再墙上) 告诉你墙之间(包括外墙)围成了一些小房间,在小房间 ...

  4. POJ 1410 Intersection --几何,线段相交

    题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内. 解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可.这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单 ...

  5. POJ 1269 Intersecting Lines(线段相交,水题)

    id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...

  6. POJ 1066 Treasure Hunt【线段相交】

    思路:枚举四边墙的门的中点,与终点连成一条线段,判断与其相交的线段的个数.最小的加一即为答案. 我是傻逼,一个数组越界调了两个小时. #include<stdio.h> #include& ...

  7. poj 1556 (Dijkstra + Geometry 线段相交)

    链接:http://poj.org/problem?id=1556 The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  8. POJ 3304 Segments[直线与线段相交]

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13514   Accepted: 4331 Descrip ...

  9. POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

    题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. 使用Android Studio过程中,停留在“Building ‘工程名’ Gradle project info”的解决方法

    http://www.loverobots.cn/in-the-process-of-using-studio-android-the-solution-of-the-project-info-gra ...

  2. 用于 C&sharp; 图像识别的轮廓分析技术

    用于 C♯ 图像识别的轮廓分析技术 供稿:Conmajia 标题:Contour Analysis for Image Recognition in C# 作者:Pavel Torgashov 此中文 ...

  3. line-height相关总结

    line-height http://cindylu520.iteye.com/blog/670512 四个boxes containing boxes inline boxes 匿名inline b ...

  4. 数据结构与算法(c++)——双缓存队列

    "双缓存队列"是我在一次开发任务中针对特殊场景设计出来的结构.使用场景为:发送端持续向接收端发送数据包--并且不理会接收端是否完成业务逻辑.由于接收端在任何情况下停止响应即可能产生 ...

  5. 基于Redis的分布式锁的简单实现

    Redis官方给出两种思路 第一种:SET key value [EX seconds] [PX milliseconds] NX 第二种:SETNX+GETSET 首先,分别看一下这几个命令 SET ...

  6. Python3.6.1的安装

    Python 3.61的下载和安装,下载地址:https://www.python.org/downloads/ 选择最近的版本,目前为Python3.6.1,下载后直接安装即可 下载包为: 双击安装 ...

  7. DataTable转泛型List

    在.net项目研发过程中,有时候需要将从数据库中获取的DataTable数据类型,转换为泛型集合,然后运用LINQ对集合进行操作,我将此总结一下,方便你我他. 核心类: public class Da ...

  8. 微信小程序左右滑动切换图片酷炫效果

    开门见山,先上效果吧!感觉可以的用的上的再往下看. 心动吗?那就继续往下看! 先上页面结构吧,也就是wxml文件,其实可以理解成微信自己封装过的html,这个不多说了,不懂也没必要往下看了. < ...

  9. python3 第十三章 - 数据类型之tuple(元组)

    元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号,列表使用方括号. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可: language = ('c', 'c++', 'py ...

  10. tinyproxy实现https正向代理

    安装 yum install tinyproxy -y 配置 # vim /etc/tinyproxy/tinyproxy.conf ## ## tinyproxy.conf -- tinyproxy ...