附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分。
前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数。
假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法。
1、手工求导
该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导。缺点是对于复杂函数容易出错。幸运的是,这一计算过程可由计算机帮我们完成,这就是符号微分。
2、符号微分(Symbolic Differentiation)
如图D-1所示,使用符号微分的方法,计算函数$g(x,y) = 5 + xy$的偏导数。该图左侧代表函数$g(x,y)$,右侧代表$g(x,y)$关于$x$的偏导数$\frac{\partial g}{\partial x} = 0 + (0 \times x + y \times 1) = y$(同样的,可以求得$\frac{\partial g}{\partial y}$)。
图D-1 符号微分
该算法首先求叶子节点关于$x$的偏导数,然后沿着树向上,求得其他节点关于自变量的偏导数。这与手工求导所使用的规则是一样的。
如果函数复杂,该算法生成的树将十分庞大,性能不高。而且无法对很随意的代码求导,例如:
def my_func(a, b):
z = 0
for i in range(100):
z = a * np.cos(z + i) + z * np.sin(b - i)
return z
3、数值微分(Numerical Differentiation)
这是根据导数的定义来求解的。函数$h(x)$在$x_0$点的导数为:
$h'(x) = \lim_{\varepsilon \rightarrow 0} \frac{h(x_0 + \varepsilon) - h(x_0)}{\varepsilon}$
我们取一个很小的$\varepsilon$,带入公式进行计算即可。该方法所得结果不够精确,参数过多时计算量也比较大。但是计算起来很简单,可用于校验手工算出的导数是否正确。
如果有1000个参数,至少需要调用$h(x)$1001词,来求得所有偏导数。
4、前向自动微分(Forward-Mode Autodiff)
该算法依赖一个虚数(dual numbers,这让我想起来oracle的虚表。难度dual可以表示虚无的意思?) $\varepsilon$,满足$\varepsilon^2 = 0$但是$\varepsilon \neq 0$(姑且理解为一阶无穷小吧)。
由于$\varepsilon$是无穷小,因此满足$h(a + b \varepsilon) = h(a) + b \times h'(a)\varepsilon$。因此,算出$h(a + \varepsilon) $可以同时得到$h(a)$和$h'(a)$,如图D-2所示。
图D-2 前向自动微分
上图值计算了$\frac{\partial f}{\partial x}(3,4)$,同样的方法可以算的$\frac{\partial f}{\partial y}(3,4)$。
如果有1000个参数,需要遍历上图1000次,来求得所有偏导数。
5、反向自动微分(Reverse-Mode Autodiff)
这是TensorFlow所采用的自动微分算法。如图D-3所示,该算法首先前向(也就是从输入到输出)计算每个节点的值,然后反向(从输出到输入)计算所有的偏导数。
图D-3 反向自动微分
反向计算时应用链式求导法则:
$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial n_i} \times \frac{\partial n_i}{\partial x}$
由于$n_7$就是输出节点,$f = n_7$,因此$\frac{\partial f}{\partial n_7} = 1$。
该算法强大且精确,尤其是输入很多,输出很少时。假如函数有10个输出(不管输入是1千,2万还是更多),求得所有偏导数需要对上图遍历11次。
各个算法比较:
附录D——自动微分(Autodiff)的更多相关文章
- (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- 自动微分(AD)学习笔记
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...
- <转>如何用C++实现自动微分
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- 【tensorflow2.0】自动微分机制
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.Gradi ...
- PyTorch 自动微分示例
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- MindSpore:自动微分
MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...
随机推荐
- 【cocos 2d-x】VS2012+win7+cocos2d-x3.0beta2开发环境配置
本系列文章由@二货梦想家张程 所写,转载请注明出处. 作者:ZeeCoder 微博链接:http://weibo.com/zc463717263 我的邮箱:michealfloyd@126.com ...
- 关于Service中bindService注意的几个问题
最近有用到Activity需要不断的从Service中获取数据,第一个想法肯定就是通过bind回调机制了,有几点概念模糊特此记录下: 单独使用bindService(),unbindService() ...
- 系统性能监测(使用nmon、nmonanalyser)
系统性能监测使用工具: l系统性能监测使用的主要监测工具是:nmon(AIX6.1及以上版本系统自带). l系统性能监测使用的主要分析工具是:nmonanalyser. NMON工具简介: NMON工 ...
- android bitmap的内存分配和优化
首先Bitmap在Android虚拟机中的内存分配,在Google的网站上给出了下面的一段话 大致的意思也就是说,在Android3.0之前,Bitmap的内存分配分为两部分,一部分是分配在Dalvi ...
- 使用vs2010 opencv2.4.4编译release版本程序
大体上要注意一下几点内容: 1.vc++目录的选择上,库目录选择为opencv目录中的staticlib目录 2.在链接->输入->附加依赖库,中添加,相应的staticlib库目录中的所 ...
- 《转》iOS 平台 Cocos2d-x 项目接入新浪微博 SDK 的坑
最近在做一个 iOS 的 cocos2d-x 项目接入新浪微博 SDK 的时候被“坑”了,最后终于顺利的解决了.发现网上也有不少人遇到一样的问题,但是能找到的数量有限的解决办法写得都不详细,很难让人理 ...
- c#调用野狗云 rest api
野狗云就不多介绍了,这里主要是记录一下c#调用他们提供的rest api,把数据post到野狗云存储,直接上代码 static void Main(string[] args) { string st ...
- 《深入理解Java虚拟机》读书笔记3--垃圾回收算法
转载:http://blog.csdn.net/tjiyu/article/details/53983064 下面先来了解Java虚拟机垃圾回收的几种常见算法:标记-清除算法.复制算法.标记-整理算法 ...
- oracle dmp数据导入
11.245.2.55 root:root su - pams --注意pams前面的空格 /cnaps2/pams/backup exp_pams_20141219.dmp drop tab ...
- 教你一步步发布一个开源库到 JCenter
今天想来分享下,如何一步步自己发布一个开源库到 JCenter 这方面的博客网上已经特别多了,所以本篇并不打算仅仅只是记录流程步骤而已,而是尽可能讲清楚,为什么需要有这个步骤,让大伙知其然的同时还知其 ...