本文介绍了五种微分方式,最后两种才是自动微分。

前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数。

假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法。

1、手工求导

该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导。缺点是对于复杂函数容易出错。幸运的是,这一计算过程可由计算机帮我们完成,这就是符号微分。

2、符号微分(Symbolic Differentiation)

如图D-1所示,使用符号微分的方法,计算函数$g(x,y) = 5 + xy$的偏导数。该图左侧代表函数$g(x,y)$,右侧代表$g(x,y)$关于$x$的偏导数$\frac{\partial g}{\partial x} = 0 + (0 \times x + y \times 1) = y$(同样的,可以求得$\frac{\partial g}{\partial y}$)。

图D-1 符号微分

该算法首先求叶子节点关于$x$的偏导数,然后沿着树向上,求得其他节点关于自变量的偏导数。这与手工求导所使用的规则是一样的。

如果函数复杂,该算法生成的树将十分庞大,性能不高。而且无法对很随意的代码求导,例如:

def my_func(a, b):
z = 0
for i in range(100):
z = a * np.cos(z + i) + z * np.sin(b - i)
return z

3、数值微分(Numerical Differentiation)

这是根据导数的定义来求解的。函数$h(x)$在$x_0$点的导数为:

$h'(x) = \lim_{\varepsilon \rightarrow 0} \frac{h(x_0 + \varepsilon) - h(x_0)}{\varepsilon}$

我们取一个很小的$\varepsilon$,带入公式进行计算即可。该方法所得结果不够精确,参数过多时计算量也比较大。但是计算起来很简单,可用于校验手工算出的导数是否正确。

如果有1000个参数,至少需要调用$h(x)$1001词,来求得所有偏导数。

4、前向自动微分(Forward-Mode Autodiff)

该算法依赖一个虚数(dual numbers,这让我想起来oracle的虚表。难度dual可以表示虚无的意思?) $\varepsilon$,满足$\varepsilon^2 = 0$但是$\varepsilon \neq 0$(姑且理解为一阶无穷小吧)。

由于$\varepsilon$是无穷小,因此满足$h(a + b \varepsilon) = h(a) + b \times h'(a)\varepsilon$。因此,算出$h(a + \varepsilon) $可以同时得到$h(a)$和$h'(a)$,如图D-2所示。

图D-2 前向自动微分

上图值计算了$\frac{\partial f}{\partial x}(3,4)$,同样的方法可以算的$\frac{\partial f}{\partial y}(3,4)$。

如果有1000个参数,需要遍历上图1000次,来求得所有偏导数。

5、反向自动微分(Reverse-Mode Autodiff)

这是TensorFlow所采用的自动微分算法。如图D-3所示,该算法首先前向(也就是从输入到输出)计算每个节点的值,然后反向(从输出到输入)计算所有的偏导数。

图D-3 反向自动微分

反向计算时应用链式求导法则:

$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial n_i} \times \frac{\partial n_i}{\partial x}$

由于$n_7$就是输出节点,$f = n_7$,因此$\frac{\partial f}{\partial n_7} = 1$。

该算法强大且精确,尤其是输入很多,输出很少时。假如函数有10个输出(不管输入是1千,2万还是更多),求得所有偏导数需要对上图遍历11次。

各个算法比较:

附录D——自动微分(Autodiff)的更多相关文章

  1. (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理

    现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...

  2. pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分

    参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...

  3. 自动微分(AD)学习笔记

    1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...

  4. <转>如何用C++实现自动微分

    作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...

  5. PyTorch自动微分基本原理

    序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...

  6. 【tensorflow2.0】自动微分机制

    神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.Gradi ...

  7. PyTorch 自动微分示例

    PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...

  8. PyTorch 自动微分

    PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...

  9. MindSpore:自动微分

    MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...

随机推荐

  1. How tomcat works 读书笔记十七 启动tomcat 上

    一路跋山涉水,这是最后一章了. 关于tomcat的启动,有两个类,一个是Catalina类,一个是Bootstrap类. 理论上,两个类可以和到一起,但是为了支持多种运行模式,又把他们分开了. 为了让 ...

  2. how tomcat works 读书笔记 十一 StandWrapper 上

    方法调用序列 下图展示了方法调用的协作图:  这个是前面第五章里,我画的图:  我们再回顾一下自从连接器里  connector.getContainer().invoke(request, resp ...

  3. LeetCode之旅(22)-House Robber

    题目: You are a professional robber planning to rob houses along a street. Each house has a certain am ...

  4. How I Turned Down $300,000 from Microsoft to go Full-Time on GitHub

    How I Turned Down $300,000 from Microsoft to go Full-Time on GitHub (我是如何拒绝微软30w的诱惑,专注于GitHub事业) 当我老 ...

  5. 恶补web之六:javascript知识(1)

    javascript(下称js)是一种轻量级编程语言,它可以插入html页面然后由浏览器执行. document.write("<h1>...</h1>") ...

  6. 三、编辑 Update set

    文档目录 开始使用  初始化查询实例: LambdaToSql.SqlClient DB = new LambdaToSql.SqlClient(); 更新单个实体对象,必须有主键Guid var e ...

  7. convert sorted list to binary search tree(将有序链表转成平衡二叉搜索树)

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  8. 对于程序员在boss直聘求职的建议

    最近为一个岗位的招聘,在直聘伤刷了三百份简历 0.上传简历最好是PDF,word简历在不同的系统和软件下排版可能会出问题. 1.新职位投得要快,后面投的,有可能看不到. 为了投的命中率,投之前最好看一 ...

  9. Microsoft Visual C++ Compiler for Python 2.7真正下载地址

    真正下载地址: http://origin.www.ms.akadns.NET/en-us/download/details.aspx?id=44266 那个微软地址好像不可用.

  10. mysql经典面试题

    数据库优化:这个优化法则归纳为5个层次:1. 减少数据访问(减少磁盘访问)2. 返回更少数据(减少网络传输或磁盘访问)3. 减少交互次数(减少网络传输)4. 减少服务器CPU开销(减少CPU及内存开销 ...