[POI2015]Odwiedziny
[POI2015]Odwiedziny
题目大意:
一棵\(n(n\le5\times10^4)\)个点的树,\(n\)次询问从一个点到另一个点的路径上,每次跳\(k\)个点,所经过的点权和。
思路:
分块思想。
当\(k\ge\sqrt n\)时,显然每次询问不会跳超过\(\sqrt n\)次,可以借助树链剖分在\(\mathcal O(\sqrt n)\)的时间内暴力完成询问。
当\(k<\sqrt n\)时,预处理从一个点出发,每次跳\(k\)格,跳到根结点的权值和。可以\(\mathcal O(\log n)\)求LCA,\(\mathcal O(1)\)回答。
时间复杂度\(\mathcal O(n\sqrt n)\)。
源代码:
#include<cmath>
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=50001,B=223;
int n,block,a[N],b[N],c[N];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
int anc[N][B],sum[N][B],dep[N],top[N],son[N],size[N],dfn[N],id[N];
void dfs(const int &x,const int &par) {
size[x]=1;
anc[x][1]=par;
sum[x][1]=sum[par][1]+a[x];
dep[x]=dep[par]+1;
for(register int i=2;i<block;i++) {
anc[x][i]=anc[anc[x][i-1]][1];
sum[x][i]=sum[anc[x][i]][i]+a[x];
}
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x);
size[x]+=size[y];
if(size[y]>size[son[x]]) {
son[x]=y;
}
}
}
void dfs(const int &x) {
dfn[x]=++dfn[0];
id[dfn[x]]=x;
top[x]=x==son[anc[x][1]]?top[anc[x][1]]:x;
if(son[x]) dfs(son[x]);
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==anc[x][1]||y==son[x]) continue;
dfs(y);
}
}
inline int lca(int x,int y) {
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
x=anc[top[x]][1];
}
if(dep[x]<dep[y]) std::swap(x,y);
return y;
}
inline int father(int x,int k) {
if(k>=dep[x]) return 0;
while(k>=dep[x]-dep[top[x]]+1) {
k-=dep[x]-dep[top[x]]+1;
x=anc[top[x]][1];
}
return id[dfn[x]-k];
}
inline int calc(int x,int y,const int &k) {
if(dep[x]<=dep[y]) return 0;
int ret=0;
if(k<block) {
while(y&&(dep[x]-dep[y])%k) y=anc[y][1];
ret=sum[x][k]-sum[y][k];
} else {
while(dep[x]>dep[y]) {
ret+=a[x];
x=father(x,k);
}
}
return ret;
}
inline int query(int x,int y,const int &k) {
const int z=lca(x,y),dis=dep[x]+dep[y]-dep[z]*2;
int ret=calc(x,z,k);
if(dis%k) {
ret+=a[y];
y=father(y,dis%k);
}
ret+=calc(y,anc[z][1],k);
return ret;
}
int main() {
block=sqrt(n=getint());
for(register int i=1;i<=n;i++) a[i]=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
dfs(1);
for(register int i=1;i<=n;i++) b[i]=getint();
for(register int i=1;i<n;i++) {
printf("%d\n",query(b[i],b[i+1],getint()));
}
return 0;
}
[POI2015]Odwiedziny的更多相关文章
- bzoj4381: [POI2015]Odwiedziny
这题搞了我一下午……因为一些傻X的问题…… 对于步长大于sqrt(n)的询问,我们可以直接暴力求解 然后,我们可以事先预处理出d[u][step]表示u往上跳,每次跳step步,直到跳到不能跳为止,所 ...
- BZOJ4381[POI2015]Odwiedziny——分块+长链剖分
题目描述 给定一棵n个点的树,树上每条边的长度都为1,第i个点的权值为a[i].Byteasar想要走遍这整棵树,他会按照某个1到n的全排列b走n-1次,第i次他会从b[i]点走到b[i+1]点,并且 ...
- BZOJ4381 : [POI2015]Odwiedziny / Luogu3591[POI2015]ODW - 分块+树剖
Solution 在步伐$pace$比较小的时候, 我们发现用前缀和直接维护会很快 而在$pace$比较大的时候, 则暴力往上跳会最优 设$blo= \sqrt{N}$ 若$pace<=blo$ ...
- @bzoj - 4381@ [POI2015] Odwiedziny
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一棵 n 个点的树,树上每条边的长度都为 1 ,第 i 个点 ...
- [Poi2015]
[POI2015]Łasuchy 一看以为是sb题 简单来说就是每个人获得热量要尽量多 不能找别人 首先这道题好像我自己找不到NIE的情况 很容易想到一个优化 如果一个数/2>另一个数 那么一定 ...
- POI2015题解
POI2015题解 吐槽一下为什么POI2015开始就成了破烂波兰文题目名了啊... 咕了一道3748没写打表题没什么意思,还剩\(BZOJ\)上的\(14\)道题. [BZOJ3746][POI20 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- BZOJ 4385: [POI2015]Wilcze doły
4385: [POI2015]Wilcze doły Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 648 Solved: 263[Submit][ ...
- BZOJ 4384: [POI2015]Trzy wieże
4384: [POI2015]Trzy wieże Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 217 Solved: 61[Submit][St ...
随机推荐
- 洛谷 P4175: bzoj 1146: [CTSC2008]网络管理
令人抓狂的整体二分题.根本原因还是我太菜了. 在学校写了一个下午写得头晕,回家里重写了一遍,一个小时就写完了--不过还是太慢. 题目传送门:洛谷P4175. 题意简述: 一棵 \(n\) 个结点的树, ...
- 终端多窗口分屏Terminator
1.安装 Terminator最大的特点就是可以在一个窗口中打开多个终端 sudo apt-get install terminator 2.快捷键 Ctrl+Shift+E 垂直分割窗口 Ctrl+ ...
- linux 获取时间后--自定义时间格式
自定义时间格式 =================================-===================================== #include <stdio.h ...
- 谈谈.NET MVC QMVC高级开发
自从吾修主页上发布了QMVC1.0,非常感兴趣,用了半月的时间学习,真的感觉收益非浅,在此声明非常感谢吾修大哥的分享! 1.轻快简单,框架就几个类,简单,当然代码少也就运行快!单纯的MVC,使的如果你 ...
- 【不知道是啥的NOIP模拟赛】网络入侵
题意是这样的: 给你一棵树,每个边有一个初始的0/1边权.你希望把它弄成一个给定的样子. 你每次可以选一条树链取反,然后问你最少要操作几次. ----------------------------- ...
- 磁盘性能分析之iotop
一.安装. yum install iotop [root@localhost tmp]# iotop -o iotop命令的键盘快捷键: 1.左右箭头改变排序方式,默认是按IO排序 2.r键是反向排 ...
- J2V8 For Android
J2V8是基于Google的JavaScript引擎V8的Java开源项目,实现Java和JavaScript的相互调用.并对Android平台提供支持,最新版本提供了aar格式的类库包方便Andro ...
- node项目中用到的一些模块
1.http模块,用来搭建服务器 代码,简单服务器实现 var http = require('http'); http.createServer(function (request, respons ...
- Python3 出现'ascii' codec can't encode characters问题
当使用urllib.request.urlopen打开包含中文的链接时报错: from urllib import request url = 'https://baike.baidu.com/ite ...
- Java容器---Set: HashSet & TreeSet & LinkedHashSet
1.Set接口概述 Set 不保存重复的元素(如何判断元素相同呢?).如果你试图将相同对象的多个实例添加到Set中,那么它就会阻止这种重复现象. Set中最常被使用的是测试归属性,你可以 ...