机器学习之路:python 网格搜索 并行搜索 GridSearchCV 模型检验方法
git:https://github.com/linyi0604/MachineLearning
如何确定一个模型应该使用哪种参数? k折交叉验证:
将样本分成k份
每次取其中一份做测试数据 其他做训练数据
一共进行k次训练和测试
用这种方式 充分利用样本数据,评估模型在样本上的表现情况 网格搜索:
一种暴力枚举搜索方法
对模型参数列举出集中可能,
对所有列举出的可能组合进行模型评估
从而找到最好的模型参数
并行搜索:
由于每一种参数组合互相是独立不影响的
所有可以开启多线程进行网格搜索
这种方式为并行搜索
python实现的代码:
from sklearn.datasets import fetch_20newsgroups
from sklearn.cross_validation import train_test_split
import numpy as np
from sklearn.svm import SVC
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV # 博文: http://www.cnblogs.com/Lin-Yi/p/9000989.html '''
如何确定一个模型应该使用哪种参数? k折交叉验证:
将样本分成k份
每次取其中一份做测试数据 其他做训练数据
一共进行k次训练和测试
用这种方式 充分利用样本数据,评估模型在样本上的表现情况 网格搜索:
一种暴力枚举搜索方法
对模型参数列举出集中可能,
对所有列举出的可能组合进行模型评估
从而找到最好的模型参数 并行搜索:
由于每一种参数组合互相是独立不影响的
所有可以开启多线程进行网格搜索
这种方式为并行搜索 ''' # 联网获取所有想你问数据
news = fetch_20newsgroups(subset="all")
# 分割训练数据和测试数据
x_train, x_test, y_train, y_test = train_test_split(news.data[:3000],
news.target[:3000],
test_size=0.25,
random_state=33) # 使用pipeline简化系统搭建流程
clf = Pipeline([("vect", TfidfVectorizer(stop_words="english", analyzer="word")), ("svc", SVC())]) # 这里要实验的超参数有两个 4个svg__gama 和 3个svg__C 一共12种组合
# np.logspace(start, end, num) 从10^start 到 10^end 创建num个数的等比数列
parameters = {"svc__gamma": np.logspace(-2, 1, 4), "svc__C": np.logspace(-1, 1, 3)} # 网格搜索
# 创建一个网格搜索: 12组参数组合, 3折交叉验证
gs = GridSearchCV(clf, parameters, verbose=2, refit=True, cv=3)
# 设置n_jobs=-1 表示占用所有cpu开线程 5表示开启5个同步任务
# windows下不支持fork开启线程 所有 linux unix mac 可以用该api
# gs = GridSearchCV(clf, parameters, verbose=2, refit=True, cv=3, n_jobs=-1) # 执行单线程网格搜索
time_ = gs.fit(x_train, y_train)
print(time_)
print(gs.best_params_, gs.best_score_)
# 输出最佳模型在测试机和上的准确性
print(gs.score(x_test, y_test))
'''
Fitting 3 folds for each of 12 candidates, totalling 36 fits
[CV] svc__C=0.1, svc__gamma=0.01 .....................................
[CV] ............................ svc__C=0.1, svc__gamma=0.01 - 8.3s
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 8.3s remaining: 0.0s
[CV] svc__C=0.1, svc__gamma=0.01 .....................................
[CV] ............................ svc__C=0.1, svc__gamma=0.01 - 8.5s
[CV] svc__C=0.1, svc__gamma=0.01 .....................................
[CV] ............................ svc__C=0.1, svc__gamma=0.01 - 8.5s
[CV] svc__C=0.1, svc__gamma=0.1 ......................................
[CV] ............................. svc__C=0.1, svc__gamma=0.1 - 8.4s
[CV] svc__C=0.1, svc__gamma=0.1 ......................................
[CV] ............................. svc__C=0.1, svc__gamma=0.1 - 8.5s
[CV] svc__C=0.1, svc__gamma=0.1 ......................................
[CV] ............................. svc__C=0.1, svc__gamma=0.1 - 8.5s
[CV] svc__C=0.1, svc__gamma=1.0 ......................................
[CV] ............................. svc__C=0.1, svc__gamma=1.0 - 8.4s
[CV] svc__C=0.1, svc__gamma=1.0 ......................................
[CV] ............................. svc__C=0.1, svc__gamma=1.0 - 8.6s
[CV] svc__C=0.1, svc__gamma=1.0 ......................................
[CV] ............................. svc__C=0.1, svc__gamma=1.0 - 8.6s
[CV] svc__C=0.1, svc__gamma=10.0 .....................................
[CV] ............................ svc__C=0.1, svc__gamma=10.0 - 8.5s
[CV] svc__C=0.1, svc__gamma=10.0 .....................................
[CV] ............................ svc__C=0.1, svc__gamma=10.0 - 8.6s
[CV] svc__C=0.1, svc__gamma=10.0 .....................................
[CV] ............................ svc__C=0.1, svc__gamma=10.0 - 8.7s
[CV] svc__C=1.0, svc__gamma=0.01 .....................................
[CV] ............................ svc__C=1.0, svc__gamma=0.01 - 8.3s
[CV] svc__C=1.0, svc__gamma=0.01 .....................................
[CV] ............................ svc__C=1.0, svc__gamma=0.01 - 8.4s
[CV] svc__C=1.0, svc__gamma=0.01 .....................................
[CV] ............................ svc__C=1.0, svc__gamma=0.01 - 8.5s
[CV] svc__C=1.0, svc__gamma=0.1 ......................................
[CV] ............................. svc__C=1.0, svc__gamma=0.1 - 8.3s
[CV] svc__C=1.0, svc__gamma=0.1 ......................................
[CV] ............................. svc__C=1.0, svc__gamma=0.1 - 8.4s
[CV] svc__C=1.0, svc__gamma=0.1 ......................................
[CV] ............................. svc__C=1.0, svc__gamma=0.1 - 8.5s
[CV] svc__C=1.0, svc__gamma=1.0 ......................................
[CV] ............................. svc__C=1.0, svc__gamma=1.0 - 8.5s
[CV] svc__C=1.0, svc__gamma=1.0 ......................................
[CV] ............................. svc__C=1.0, svc__gamma=1.0 - 8.6s
[CV] svc__C=1.0, svc__gamma=1.0 ......................................
[CV] ............................. svc__C=1.0, svc__gamma=1.0 - 8.7s
[CV] svc__C=1.0, svc__gamma=10.0 .....................................
[CV] ............................ svc__C=1.0, svc__gamma=10.0 - 8.5s
[CV] svc__C=1.0, svc__gamma=10.0 .....................................
[CV] ............................ svc__C=1.0, svc__gamma=10.0 - 8.6s
[CV] svc__C=1.0, svc__gamma=10.0 .....................................
[CV] ............................ svc__C=1.0, svc__gamma=10.0 - 8.7s
[CV] svc__C=10.0, svc__gamma=0.01 ....................................
[CV] ........................... svc__C=10.0, svc__gamma=0.01 - 8.4s
[CV] svc__C=10.0, svc__gamma=0.01 ....................................
[CV] ........................... svc__C=10.0, svc__gamma=0.01 - 8.4s
[CV] svc__C=10.0, svc__gamma=0.01 ....................................
[CV] ........................... svc__C=10.0, svc__gamma=0.01 - 8.7s
[CV] svc__C=10.0, svc__gamma=0.1 .....................................
[CV] ............................ svc__C=10.0, svc__gamma=0.1 - 8.6s
[CV] svc__C=10.0, svc__gamma=0.1 .....................................
[CV] ............................ svc__C=10.0, svc__gamma=0.1 - 8.6s
[CV] svc__C=10.0, svc__gamma=0.1 .....................................
[CV] ............................ svc__C=10.0, svc__gamma=0.1 - 8.6s
[CV] svc__C=10.0, svc__gamma=1.0 .....................................
[CV] ............................ svc__C=10.0, svc__gamma=1.0 - 8.5s
[CV] svc__C=10.0, svc__gamma=1.0 .....................................
[CV] ............................ svc__C=10.0, svc__gamma=1.0 - 8.6s
[CV] svc__C=10.0, svc__gamma=1.0 .....................................
[CV] ............................ svc__C=10.0, svc__gamma=1.0 - 9.3s
[CV] svc__C=10.0, svc__gamma=10.0 ....................................
[CV] ........................... svc__C=10.0, svc__gamma=10.0 - 8.8s
[CV] svc__C=10.0, svc__gamma=10.0 ....................................
[CV] ........................... svc__C=10.0, svc__gamma=10.0 - 8.9s
[CV] svc__C=10.0, svc__gamma=10.0 ....................................
[CV] ........................... svc__C=10.0, svc__gamma=10.0 - 8.7s 12组超参数 3折交叉验证 共36个搜索项 花费5.2分钟
[Parallel(n_jobs=1)]: Done 36 out of 36 | elapsed: 5.2min finished 最佳参数 最佳训练得分
{'svc__C': 10.0, 'svc__gamma': 0.1} 0.7906666666666666
最佳模型的测试得分
0.8226666666666667 '''
机器学习之路:python 网格搜索 并行搜索 GridSearchCV 模型检验方法的更多相关文章
- 机器学习算法中的网格搜索GridSearch实现(以k-近邻算法参数寻最优为例)
机器学习算法参数的网格搜索实现: //2019.08.031.scikitlearn库中调用网格搜索的方法为:Grid search,它的搜索方式比较统一简单,其对于算法批判的标准比较复杂,是一种复合 ...
- 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...
- 机器学习之路--Python
常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...
- 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价
python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...
- 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...
- 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...
- Python机器学习笔记 Grid SearchCV(网格搜索)
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者 ...
- Python之网格搜索与检查验证-5.2
一.网格搜索,在我们不确定超参数的时候,需要通过不断验证超参数,来确定最优的参数值.这个过程就是在不断,搜索最优的参数值,这个过程也就称为网格搜索. 二.检查验证,将准备好的训练数据进行平均拆分,分为 ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
随机推荐
- thinkphp 带条件分页查询
thinkphp 带条件分页查询:form表单传值时候,method='get'. 用 get 传值
- linux中set、unset、export、env、declare,readonly的区别以及用法
set命令显示当前shell的变量,包括当前用户的变量; env命令显示当前用户的变量; export命令显示当前导出成用户变量的shell变量. 每个shell有自己特有 ...
- 将网址url中的参数转化为JSON格式
网上方法很多,各种奇技淫巧,这里贴上一种较为正常的思路. 主要利用split对获取的字符串不断进行分割,最后获得所需要的格式. 代码如下 <!DOCTYPE html> <html ...
- 推荐一本springBoot学习书籍---深入浅出springBoot2.x
花了几周时间读完了这本书,确实是一本特别详细全面的书,而且不单单只是springBoot, 书中还介绍了许多工作中常用的技术与springBoot的整合使用,当然,也有一些小bug, 因为在代码实践过 ...
- weight decay(权值衰减)、momentum(冲量)和normalization
一.weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularizat ...
- 【记录】尝试用QEMU模拟ARM开发板去加载并运行Uboot,kernel,rootfs【转】
转自:https://www.crifan.com/try_use_qemu_emulate_arm_board_to_load_and_run_uboot_kernel_rootfs/ [背景] 手 ...
- python目前安装的包备份
Package Version ------------------------------- ------------------ alembic altgraph 0.14 apistar app ...
- Linux USB驱动框架分析 【转】
转自:http://blog.chinaunix.net/uid-11848011-id-96188.html 初次接触与OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结 ...
- shell监控网站是否自动运行并自动重启【原创】
shell监控网站是否自动运行并自动重启 #!/bin/bash -T www.baidu.com ];then echo "`date` 网站访问正常!" >> /r ...
- linux服务器登录时慢出现卡顿
使用SSH远程登录Linux在输入用户名之后在过了好几秒之后才会出现输入密码.严重影响工作效率.登录很慢,登录上去后速度正常,这种情况的主要原因为: DNS反向解析的问题 SSH在登录的时候一般我们输 ...