A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2390    Accepted Submission(s): 1731

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 
Author
xhd
 
  对于拓欧我用的一点也不熟练,特别是限制解必须为正数时,而本题规定了b,9973互质,直接取模至正数,还变简单了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long qword;
qword ext_gcd(qword a,qword b,qword &x,qword &y)
{
if (a%b==)
{
//a*x+b*y==b
x=;y=;
return y;
}
qword ret=ext_gcd(b,a%b,x,y);
qword tx=x,ty=y;
x=ty;
y=tx-a/b*ty;
return ret;
}
int main()
{
//freopen("input.txt","r",stdin);
//A=9973*x+n
//(9973*x+n)=y*B
//9973*x-B*y==-n
qword n,a,b,x,y,yy,xx;
int nn;
scanf("%d",&nn);
qword g;
while (nn--)
{
scanf("%I64d%I64d",&n,&b);
g=ext_gcd(,b,x,y);
x*=-n;y*=n;
// cout<<9973*x-b*y<<endl;
yy=(y%+)%;
xx=x-(y-yy)/*b;
// cout<<9973*xx-b*yy<<endl;
cout<<yy<<endl;
}
}

hdu 1576 A/B 拓展欧几里得算法的更多相关文章

  1. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  2. POJ 1601 拓展欧几里得算法

    学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 先来学习一下什么是欧几里得算法: 欧几里得原理是:两个整数 ...

  3. 数论入门——斐蜀定理与拓展欧几里得算法

    斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd ...

  4. 欧几里得 &amp; 拓展欧几里得算法 解说 (Euclid &amp; Extend- Euclid Algorithm)

    欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. -- ...

  5. ACM数论-欧几里得与拓展欧几里得算法

    欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...

  6. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  7. RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路

    void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...

  8. 欧几里得(Euclid)与拓展的欧几里得算法

    欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一 ...

  9. hdu 1576 A/B

    原题链接:hdu 1576 A/B 同样是用扩展的欧几里得算法.A = 9973k+n = xB,从而转化为:xB-9973k=n求解x即可. 具体扩展欧几里得算法请参考:hdu 2669 Roman ...

随机推荐

  1. innodb_space工具解析 MYSQL 页图解

  2. HTTP的报文格式,GET和POST的区别

    1.HTTP报文格式 HTTP报文是面向文本的,报文中的每一个字段都是一些ASCII码串,各个字段的长度是不确定的.HTTP有两类报文:请求报文和响应报文. 请求报文: 一个HTTP请求报文由请求行( ...

  3. JQuery字符串替换replace方法

    在日常的js开发中,常常会用到JQuery, 当要把字符串中的内容替换时,如果使用类似C#的string.replace方法,如下 var str='aabbccaa'; str=str.replac ...

  4. java: Eclipse jsp tomcat 环境搭建(完整)

    ] 欢迎您! 要学习一门语言,首先要做的就是搭建环境,然后能写一个小的Demo(类似Helloworld),不仅可以建立信心,而且还可以为之后的学习搭建一个验证平台,事半功倍. net领域的vs,号称 ...

  5. (转)C# 中的委托和事件

    来源:http://www.tracefact.net/CSharp-Programming/Delegates-and-Events-In-CSharp.aspx 引言 委托 和 事件在 .Net ...

  6. MVC创建通用DropdownList

    起因 MVC项目中有数据字典表,定义了多个类型,需要给每个类型做下拉菜单. 不可能每个类型,都敲一个代码,需要做成通用 思路 利用MVC的部件方式,分别定义Controller,View和Model: ...

  7. java中获得IP地址

    public class IPTest { public static void main(String[] args) { try{ // 获取计算机名 String name = InetAddr ...

  8. vsftpd安装指南

    如果您用的是Fedora 或Redhat 系统,可以用下面的命令在线安装: [root@localhost ~]# yum install vsftpd 如果是debian 类系统,可以用apt 来在 ...

  9. SQL输出矩阵

    数据库环境:SQL SERVER2008R2 需求:用SQL实现如下2个图中的矩阵.            图1和图2都是行列转换的另一个变形,下面直接贴上SQL脚本. 图1的SQL实现 /*利用系统 ...

  10. 1 Yoga3 系统装机总结.

    1- Yoga 3 存在串口驱动不安装, 那么触摸屏不能用的情况, 打破了以往对触摸屏-"纯外设" 的设想, 与系统有关!!! 2- 系统安装总结: 1) BIOS中设置UEFI ...