Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)
1、以本地模式实战map和filter
2、以集群模式实战textFile和cache
3、对Job输出结果进行升和降序
4、union
5、groupByKey
6、join
7、reduce
8、lookup
1、以本地模式实战map和filter
以local的方式,运行spark-shell。
spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ pwd
/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell
从集合中创建RDD,spark中主要提供了两种函数:parallelize和makeRDD,
scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21
scala> val mappedRDD = rdd.map(2*_)
mappedRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:23
scala> mappedRDD.collect
得到
res0: Array[Int] = Array(2, 4, 6, 8, 10)
scala>
scala> val filteredRDD = mappedRDD.filter(_ > 4)
16/09/26 20:32:29 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on localhost:40688 in memory (size: 1218.0 B, free: 534.5 MB)
16/09/26 20:32:30 INFO spark.ContextCleaner: Cleaned accumulator 1
filteredRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:25
scala> filteredRDD.collect
注意,一般,生产环境和正宗的写法是。
scala> val filteredRDDAgain = sc.parallelize(List(1,2,3,4,5)).map(2 * _).filter(_ > 4).collect
2、以集群模式实战textFile和cache
启动hadoop集群
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps
8457 Jps
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh
启动spark集群
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell --master spark://SparkSingleNode:7077
读取该文件
scala> val rdd = sc.textFile("/README.md")
使用count统计一下该文件的行数
scala> rdd.count
took 7.018386 s
res0: Long = 98
花了时间7.018386 s
通过观察RDD.scala源代码即可知道cache和persist的区别: def persist(newLevel: StorageLevel): this.type = {
if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
throw new UnsupportedOperationException( "Cannot change storage level of an RDD after it was already assigned a level")
}
sc.persistRDD(this)
sc.cleaner.foreach(_.registerRDDForCleanup(this))
storageLevel = newLevel
this
}
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY) /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist() 可知:
1)RDD的cache()方法其实调用的就是persist方法,缓存策略均为MEMORY_ONLY;
2)可以通过persist方法手工设定StorageLevel来满足工程需要的存储级别;
3)cache或者persist并不是action;
附:cache和persist都可以用unpersist来取消
进行缓存
scala> rdd.cache
res1: rdd.type = MapPartitionsRDD[1] at textFile at <console>:21
执行count,使得缓存生效
scala> rdd.count
took 2.055063 s
res2: Long = 98
花了时间 2.055063 s
再执行,count
took 0.583177 s
res3: Long = 98
花了时间 0.583177 s
总结,我们直接基于cache缓存后的数据,计算所消耗时间大大减少。
正在进行中的spark-shell
接着,对上面的RDD,进行wordcount操作
scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_)
wordcount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:23
scala> wordcount.collect
通过saveAsTextFile把数据保存起来
res4: Array[(String, Int)] = Array((package,1), (this,1), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),1), (Because,1), (Python,2), (cluster.,1), (its,1), ([run,1), (general,2), (have,1), (pre-built,1), (locally.,1), (locally,2), (changed,1), (sc.parallelize(1,1), (only,1), (several,1), (This,2), (basic,1), (Configuration,1), (learning,,1), (documentation,3), (YARN,,1), (graph,1), (Hive,2), (first,1), (["Specifying,1), ("yarn-client",1), (page](http://spark.apache.org/documentation.html),1), ([params]`.,1), (application,1), ([project,2), (prefer,1), (SparkPi,2), (<http://spark.apache.org/>,1), (engine,1), (version,1), (file,1), (documentation,,1), (MASTER,1), (example,3), (distribution.,1), (are,1), (params,1), (scala>,1), (DataFrames...
scala> wordcount.saveAsTextFile("/result")
只是,仅仅对每行,做了wordcount而已。
3、对Job输出结果进行升和降序
升序
scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
同理,去下载,不多赘述。
变了
scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
<console>:23: error: type mismatch;
found : Boolean(true)
required: ((Int, String)) => ?
val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
^
scala>
降序
scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(false).map(x => (x._2,x._1)).saveAsTextFile("/resultDescSorted")
下载,同理
此刻,成功对Job输出结果进行了排序。
4、union
union的使用
scala> val rdd1 = sc.parallelize(List(('a',1),('b',1)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[26] at parallelize at <console>:21
scala> val rdd2 = sc.parallelize(List(('c',1),('d',1)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[27] at parallelize at <console>:21
scala> rdd1 union rdd2
res6: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[28] at union at <console>:26
scala> val result = rdd1 union rdd2
result: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[29] at union at <console>:25
使用collect操作,查看一下执行结果
scala> result.collect
res7: Array[(Char, Int)] = Array((a,1), (b,1), (c,1), (d,1))
5、groupByKey
scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).groupByKey
wordcount: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[32] at groupByKey at <console>:23
scala> wordcount.collect
res8: Array[(String, Iterable[Int])] = Array((package,CompactBuffer(1)), (this,CompactBuffer(1)), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),CompactBuffer(1)), (Because,CompactBuffer(1)), (Python,CompactBuffer(1, 1)), (cluster.,CompactBuffer(1)), (its,CompactBuffer(1)), ([run,CompactBuffer(1)), (general,CompactBuffer(1, 1)), (YARN,,CompactBuffer(1)), (have,CompactBuffer(1)), (pre-built,CompactBuffer(1)), (locally.,CompactBuffer(1)), (locally,CompactBuffer(1, 1)), (changed,CompactBuffer(1)), (sc.parallelize(1,CompactBuffer(1)), (only,CompactBuffer(1)), (several,CompactBuffer(1)), (learning,,CompactBuffer(1)), (basic,CompactBuffer(1)), (first,CompactBuffer(1)), (This,CompactBuffer(1, 1)), (documentation,CompactBuffer(1, 1, 1)), (Confi...
scala>
6、join
概念知识,参考
http://www.cnblogs.com/goforward/p/4748128.html
scala> val rdd1 = sc.parallelize(List(('a',1),('a',2),('b',3),('b',4)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[33] at parallelize at <console>:21
scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[34] at parallelize at <console>:21
scala> rdd1 join rdd2
res9: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[37] at join at <console>:26
scala> val result = rdd1 join rdd2
result: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[40] at join at <console>:25
scala> result.collect
res10: Array[(Char, (Int, Int))] = Array((b,(3,7)), (b,(3,8)), (b,(4,7)), (b,(4,8)), (a,(1,5)), (a,(1,6)), (a,(2,5)), (a,(2,6)))
scala>
可见,join操作,完全是一个笛卡尔积的操作。
7、reduce
reduce本身啊,在RDD操作里,属于一个action类型的操作,会导致job作业的提交和执行。
scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[41] at parallelize at <console>:21
scala> rdd.reduce(_+_)
res11: Int = 15
8、lookup
scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[42] at parallelize at <console>:21
scala> rdd2.lookup('a') //返回一个seq, (5, 6) 是把a对应的所有元素的value提出来组成一个seq
res12: Seq[Int] = WrappedArray(5, 6)
Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)的更多相关文章
- Spark RDD/Core 编程 API入门系列之简单移动互联网数据(五)
通过对移动互联网数据的分析,了解移动终端在互联网上的行为以及各个应用在互联网上的发展情况等信息. 具体包括对不同的应用使用情况的统计.移动互联网上的日常活跃用户(DAU)和月活跃用户(MAU)的统计, ...
- Spark RDD/Core 编程 API入门系列 之rdd案例(map、filter、flatMap、groupByKey、reduceByKey、join、cogroupy等)(四)
声明: 大数据中,最重要的算子操作是:join !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD ...
- Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...
- Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)
本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1. Trandform ...
- Spark SQL 编程API入门系列之SparkSQL的依赖
不多说,直接上干货! 不带Hive支持 <dependency> <groupId>org.apache.spark</groupId> <artifactI ...
- Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)
不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...
- HBase编程 API入门系列之create(管理端而言)(8)
大家,若是看过我前期的这篇博客的话,则 HBase编程 API入门系列之put(客户端而言)(1) 就知道,在这篇博文里,我是在HBase Shell里创建HBase表的. 这里,我带领大家,学习更高 ...
- HBase编程 API入门系列之delete(客户端而言)(3)
心得,写在前面的话,也许,中间会要多次执行,连接超时,多试试就好了. 前面的基础,如下 HBase编程 API入门系列之put(客户端而言)(1) HBase编程 API入门系列之get(客户端而言) ...
- HBase编程 API入门系列之get(客户端而言)(2)
心得,写在前面的话,也许,中间会要多次执行,连接超时,多试试就好了. 前面是基础,如下 HBase编程 API入门系列之put(客户端而言)(1) package zhouls.bigdata.Hba ...
随机推荐
- 结构型模式(Structural patterns)->外观模式(Facade Pattern)
动机(Motivate): 在软件开发系统中,客户程序经常会与复杂系统的内部子系统之间产生耦合,而导致客户程序随着子系统的变化而变化.那么如何简化客户程序与子系统之间的交互接口?如何将复杂系统的内部子 ...
- sea.js,spm学习
安装spm 下载sea.js 运行spm npm install spm@2.x -g npm install spm-build -g 下载sea.js git clone https://gith ...
- mysqli 取出数据库中某表的表头和内容
需求如题 取出数据库中某表的表头和内容,并显示该表的行数和列数 <?php //显示表内容的函数 function showTable($tableName){ //连接数据库 $mysqli= ...
- mac下Apache + MySql + PHP网站开发
最近接了个小活,做一个使用PHP语言和MySql数据库的动态网站.之前做过类型的网站,是在windows系统下做的,开发环境使用的是 AppServ 的PHP开发套件.现在有了我的大MAC,所以找了M ...
- linux系统文件的颜色代表的意思
1.蓝色代表目录 2.绿色代表可执行文件 3.红色代表可压缩文件 4.白色代表其他文件 5.浅蓝色代表链接文件 6.黄色代码设备 7.红色闪烁表示链接的文件有问题
- Polygon Table - Google Chrome
Polygon table by Pedro Amaro Santos Lisboa, Portugal posted at http://forums.cgsociety.org/showthrea ...
- iOS面试题16719-b
1. 反转二叉树,不用递归 /*** Definition for a binary tree node.* public class TreeNode {* int val;* Tr ...
- Android学习之Image操作及时间日期选择器
一.基础学习 1.ImageView是图片容器,就相当于RadioGroup是RadioButton的容器一样,是View的直接子类. 1: <ImageView 2: android:id=& ...
- Ecmall系统自带的分页功能
在Ecmall的二次开发中,分页是必不可少的.这个系统已经自带了分页功能,下面来看看如何使用这个分页. 下面是一个自定义的类,用于查看订单的详细情况.关键在于get_order_data()这个方法, ...
- [ecmall]Ecmall 后台添加模板编辑区
例如,想把品牌/index.php?app=brand页面做成可编辑的. 首先,找到后台admin\includes\menu.inc.php第61行 'template' => array( ...