1、以本地模式实战map和filter

2、以集群模式实战textFile和cache

3、对Job输出结果进行升和降序

4、union

5、groupByKey

6、join

7、reduce

8、lookup

1、以本地模式实战map和filter

以local的方式,运行spark-shell。

spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ pwd
/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell

从集合中创建RDD,spark中主要提供了两种函数:parallelize和makeRDD,

scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21

scala> val mappedRDD = rdd.map(2*_)
mappedRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:23

scala> mappedRDD.collect

得到

res0: Array[Int] = Array(2, 4, 6, 8, 10)

scala>

scala> val filteredRDD = mappedRDD.filter(_ > 4)
16/09/26 20:32:29 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on localhost:40688 in memory (size: 1218.0 B, free: 534.5 MB)
16/09/26 20:32:30 INFO spark.ContextCleaner: Cleaned accumulator 1
filteredRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:25

scala> filteredRDD.collect

注意,一般,生产环境和正宗的写法是。

scala> val filteredRDDAgain = sc.parallelize(List(1,2,3,4,5)).map(2 * _).filter(_ > 4).collect

2、以集群模式实战textFile和cache

启动hadoop集群

spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps
8457 Jps
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh

启动spark集群

spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh

spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell --master spark://SparkSingleNode:7077

读取该文件

scala> val rdd = sc.textFile("/README.md")

使用count统计一下该文件的行数

scala> rdd.count

took 7.018386 s

res0: Long = 98

花了时间7.018386 s

通过观察RDD.scala源代码即可知道cache和persist的区别:

def persist(newLevel: StorageLevel): this.type = {
  if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
    throw new UnsupportedOperationException( "Cannot change storage level of an RDD after it was already assigned a level")
  }
  sc.persistRDD(this)
  sc.cleaner.foreach(_.registerRDDForCleanup(this))
  storageLevel = newLevel
  this
}
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY) /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist() 可知:
1)RDD的cache()方法其实调用的就是persist方法,缓存策略均为MEMORY_ONLY;
2)可以通过persist方法手工设定StorageLevel来满足工程需要的存储级别;
3)cache或者persist并不是action;
附:cache和persist都可以用unpersist来取消

进行缓存

scala> rdd.cache
res1: rdd.type = MapPartitionsRDD[1] at textFile at <console>:21

执行count,使得缓存生效

scala> rdd.count

took 2.055063 s
res2: Long = 98

花了时间 2.055063 s

再执行,count

took 0.583177 s
res3: Long = 98

花了时间 0.583177 s

总结,我们直接基于cache缓存后的数据,计算所消耗时间大大减少。

正在进行中的spark-shell

接着,对上面的RDD,进行wordcount操作

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_)
wordcount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:23

scala> wordcount.collect

通过saveAsTextFile把数据保存起来

res4: Array[(String, Int)] = Array((package,1), (this,1), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),1), (Because,1), (Python,2), (cluster.,1), (its,1), ([run,1), (general,2), (have,1), (pre-built,1), (locally.,1), (locally,2), (changed,1), (sc.parallelize(1,1), (only,1), (several,1), (This,2), (basic,1), (Configuration,1), (learning,,1), (documentation,3), (YARN,,1), (graph,1), (Hive,2), (first,1), (["Specifying,1), ("yarn-client",1), (page](http://spark.apache.org/documentation.html),1), ([params]`.,1), (application,1), ([project,2), (prefer,1), (SparkPi,2), (<http://spark.apache.org/>,1), (engine,1), (version,1), (file,1), (documentation,,1), (MASTER,1), (example,3), (distribution.,1), (are,1), (params,1), (scala>,1), (DataFrames...
scala> wordcount.saveAsTextFile("/result")

只是,仅仅对每行,做了wordcount而已。

3、对Job输出结果进行升和降序

升序

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")

同理,去下载,不多赘述。

变了

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
<console>:23: error: type mismatch;
found : Boolean(true)
required: ((Int, String)) => ?
val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
^

scala>

降序

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(false).map(x => (x._2,x._1)).saveAsTextFile("/resultDescSorted")

下载,同理

此刻,成功对Job输出结果进行了排序。

4、union

union的使用

scala> val rdd1 = sc.parallelize(List(('a',1),('b',1)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[26] at parallelize at <console>:21

scala> val rdd2 = sc.parallelize(List(('c',1),('d',1)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[27] at parallelize at <console>:21

scala> rdd1 union rdd2
res6: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[28] at union at <console>:26

scala> val result = rdd1 union rdd2
result: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[29] at union at <console>:25

使用collect操作,查看一下执行结果

scala> result.collect

res7: Array[(Char, Int)] = Array((a,1), (b,1), (c,1), (d,1))

5、groupByKey

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).groupByKey
wordcount: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[32] at groupByKey at <console>:23

scala> wordcount.collect

res8: Array[(String, Iterable[Int])] = Array((package,CompactBuffer(1)), (this,CompactBuffer(1)), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),CompactBuffer(1)), (Because,CompactBuffer(1)), (Python,CompactBuffer(1, 1)), (cluster.,CompactBuffer(1)), (its,CompactBuffer(1)), ([run,CompactBuffer(1)), (general,CompactBuffer(1, 1)), (YARN,,CompactBuffer(1)), (have,CompactBuffer(1)), (pre-built,CompactBuffer(1)), (locally.,CompactBuffer(1)), (locally,CompactBuffer(1, 1)), (changed,CompactBuffer(1)), (sc.parallelize(1,CompactBuffer(1)), (only,CompactBuffer(1)), (several,CompactBuffer(1)), (learning,,CompactBuffer(1)), (basic,CompactBuffer(1)), (first,CompactBuffer(1)), (This,CompactBuffer(1, 1)), (documentation,CompactBuffer(1, 1, 1)), (Confi...
scala>

6、join

概念知识,参考

http://www.cnblogs.com/goforward/p/4748128.html

scala> val rdd1 = sc.parallelize(List(('a',1),('a',2),('b',3),('b',4)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[33] at parallelize at <console>:21

scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[34] at parallelize at <console>:21

scala> rdd1 join rdd2
res9: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[37] at join at <console>:26

scala> val result = rdd1 join rdd2
result: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[40] at join at <console>:25

scala> result.collect

res10: Array[(Char, (Int, Int))] = Array((b,(3,7)), (b,(3,8)), (b,(4,7)), (b,(4,8)), (a,(1,5)), (a,(1,6)), (a,(2,5)), (a,(2,6)))

scala>

可见,join操作,完全是一个笛卡尔积的操作。

7、reduce

reduce本身啊,在RDD操作里,属于一个action类型的操作,会导致job作业的提交和执行。

scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[41] at parallelize at <console>:21

scala> rdd.reduce(_+_)

res11: Int = 15

8、lookup

scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[42] at parallelize at <console>:21

scala> rdd2.lookup('a')    //返回一个seq, (5, 6) 是把a对应的所有元素的value提出来组成一个seq

res12: Seq[Int] = WrappedArray(5, 6)

Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)的更多相关文章

  1. Spark RDD/Core 编程 API入门系列之简单移动互联网数据(五)

    通过对移动互联网数据的分析,了解移动终端在互联网上的行为以及各个应用在互联网上的发展情况等信息. 具体包括对不同的应用使用情况的统计.移动互联网上的日常活跃用户(DAU)和月活跃用户(MAU)的统计, ...

  2. Spark RDD/Core 编程 API入门系列 之rdd案例(map、filter、flatMap、groupByKey、reduceByKey、join、cogroupy等)(四)

    声明: 大数据中,最重要的算子操作是:join  !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD ...

  3. Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)

    1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...

  4. Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)

    本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandform ...

  5. Spark SQL 编程API入门系列之SparkSQL的依赖

    不多说,直接上干货! 不带Hive支持 <dependency> <groupId>org.apache.spark</groupId> <artifactI ...

  6. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  7. HBase编程 API入门系列之create(管理端而言)(8)

    大家,若是看过我前期的这篇博客的话,则 HBase编程 API入门系列之put(客户端而言)(1) 就知道,在这篇博文里,我是在HBase Shell里创建HBase表的. 这里,我带领大家,学习更高 ...

  8. HBase编程 API入门系列之delete(客户端而言)(3)

    心得,写在前面的话,也许,中间会要多次执行,连接超时,多试试就好了. 前面的基础,如下 HBase编程 API入门系列之put(客户端而言)(1) HBase编程 API入门系列之get(客户端而言) ...

  9. HBase编程 API入门系列之get(客户端而言)(2)

    心得,写在前面的话,也许,中间会要多次执行,连接超时,多试试就好了. 前面是基础,如下 HBase编程 API入门系列之put(客户端而言)(1) package zhouls.bigdata.Hba ...

随机推荐

  1. git 彩色显示当前branch

    环境: fedora 20 $ curl https://raw.githubusercontent.com/git/git/master/contrib/completion/git-prompt. ...

  2. js 判断数组中是否存在

    /* 判断数组中是否存在 var somearray = ["mon", "tue", "wed", "thur"] s ...

  3. C# Linq To DataTable 分组统计 DEMO

    DataTable dt = SQLLayer.Get工作量统计(beginDate, endDate);             var querySum = from t in dt.AsEnum ...

  4. c#简单的Json解析类

    使用方法: 引用Newtonsoft.Json.dll文件,然后引用命名空间using Newtonsoft.Json.Linq;JsonDome中有实例,照做就行 现在贴上示例代码 using Ne ...

  5. 基于smarty+medoo手搭php简单的框架

    1.首先看一下搭建好的smarty目录(箭头位置是后新建的文件夹,也是框架结构的最终目录结构) 2.首先在根目录下新建index.php文件即入口文件,内容如下 <?phprequire_onc ...

  6. window.onresize 多次触发的解决方法

    用了window.onresize但是发现每次 onresize 后页面中状态总是不对,下面与大家分享下onresize 事件多次触发的解决方法. 之前做一个扩展,需要在改变窗口大小的时候保证页面显示 ...

  7. LightOj_1317 Throwing Balls into the Baskets

    题目链接 题意: 有N个人, M个篮框, 每个人投进球的概率是P. 问每个人投K次后, 进球数的期望. 思路: 每个人都是相互独立的, 求出一个人进球数的期望即可. 进球数和篮框的选择貌似没有什么关系 ...

  8. tornado异步请求的理解(转)

    tornado异步请求的理解 http://www.kankanews.com/ICkengine/archives/88953.shtml 官网第一段话: Tornado is a Python w ...

  9. mysql connect

    def connect(_host, _user, _passwd, _db, _charset, _port): conn = MySQLdb.connect(host=_host, user=_u ...

  10. Android njava.net.UnknownHostException: Unable to resolve host

    我在android开发的时候经常会遇到这个错误,一般来说,造成这种错误的最普遍情况有两种:  1.android设备网络连接没打开,例如3G网络和WIFI网络 所以,如果遇到这种错误时,请先查看网络是 ...