really-awesome-gan

A list of papers and other resources on General Adversarial (Neural) Networks.
This site is maintained by Holger Caesar.
To complement or correct it, please contact me at holger-at-it-caesar.com or visit it-caesar.com. Also checkout really-awesome-semantic-segmentation and our COCO-Stuff dataset.

Overview

Workshops

  • NIPS 2016 Workshop on Adversarial Training [Web] [Blog]

Tutorials & Blogs

  • How to Train a GAN? Tips and tricks to make GANs work [Blog]
  • NIPS 2016 Tutorial: Generative Adversarial Networks [arXiv]
  • On the intuition behind deep learning & GANs — towards a fundamental understanding [Blog]
  • OpenAI - Generative Models [Blog]
  • SimGANs - a game changer in unsupervised learning, self driving cars, and more [Blog]

Papers

Theory & Machine Learning

  • A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models [arXiv]
  • A General Retraining Framework for Scalable Adversarial Classification [Paper]
  • AdaGAN: Boosting Generative Models [arXiv]
  • Adversarial Autoencoders [arXiv]
  • Adversarial Discriminative Domain Adaptation [arXiv]
  • Adversarial Generator-Encoder Networks [arXiv]
  • Adversarial Feature Learning [arXiv] [Code]
  • Adversarially Learned Inference [arXiv] [Code]
  • An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks [arXiv]
  • Associative Adversarial Networks [arXiv]
  • Autoencoding beyond pixels using a learned similarity metric [arXiv]
  • BEGAN: Boundary Equilibrium Generative Adversarial Networks [Paper] [arXiv] [Code]
  • Boundary-Seeking Generative Adversarial Networks [arXiv] [Code]
  • Conditional Generative Adversarial Nets [arXiv] [Code]
  • Connecting Generative Adversarial Networks and Actor-Critic Methods [Paper]
  • C-RNN-GAN: Continuous recurrent neural networks with adversarial training [arXiv]
  • Cooperative Training of Descriptor and Generator Networks [arXiv]
  • Coupled Generative Adversarial Networks [arXiv] [Code]
  • Deep and Hierarchical Implicit Models [arXiv]
  • Energy-based Generative Adversarial Network [arXiv] [Code]
  • Explaining and Harnessing Adversarial Examples [arXiv]
  • f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization [arXiv] [Code]
  • Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking [[arXiv]] (https://arxiv.org/abs/1704.04865)
  • Generalization and Equilibrium in Generative Adversarial Nets (GANs) [arXiv]
  • Generating images with recurrent adversarial networks [arXiv]
  • Generative Adversarial Nets with Labeled Data by Activation Maximization [arXiv]
  • Generative Adversarial Networks [arXiv] [Code] [Code]
  • Generative Adversarial Networks as Variational Training of Energy Based Models [arXiv]
  • Generative Adversarial Parallelization [arXiv] [Code]
  • Generative Adversarial Residual Pairwise Networks for One Shot Learning [arXiv]
  • Generative Adversarial Structured Networks [Paper]
  • Generative Cooperative Net for Image Generation and Data Augmentation [arXiv]
  • Generative Moment Matching Networks [arXiv] [Code]
  • Geometric GAN [arXiv]
  • Improved Techniques for Training GANs [arXiv] [Code]
  • Improved Training of Wasserstein GANs [arXiv] [Code]
  • InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets [arXiv] [Code]
  • Inverting The Generator Of A Generative Adversarial Network [Paper]
  • Learning in Implicit Generative Models [Paper]
  • Learning to Discover Cross-Domain Relations with Generative Adversarial Networks [arXiv] [Code]
  • Least Squares Generative Adversarial Networks [arXiv] [Code]
  • Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities [arXiv]
  • LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation [arXiv]
  • MAGAN: Margin Adaptation for Generative Adversarial Networks [arXiv] [Code]
  • Maximum-Likelihood Augmented Discrete Generative Adversarial Networks [arXiv]
  • McGan: Mean and Covariance Feature Matching GAN [arXiv]
  • Message Passing Multi-Agent GANs [arXiv]
  • Mode Regularized Generative Adversarial Networks [arXiv] [Code]
  • Multi-Agent Diverse Generative Adversarial Networks [arXiv]
  • On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Networks [arXiv]
  • On the Quantitative Analysis of Decoder-Based Generative Models [arXiv]
  • SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient [arXiv]
  • Simple Black-Box Adversarial Perturbations for Deep Networks [Paper]
  • Softmax GAN [arXiv]
  • Stacked Generative Adversarial Networks [arXiv]
  • Training generative neural networks via Maximum Mean Discrepancy optimization [arXiv]
  • Triple Generative Adversarial Nets [arXiv]
  • Unrolled Generative Adversarial Networks [arXiv]
  • Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [arXiv] [Code] [Code [Code] [Code] [Code]
  • Wasserstein GAN [arXiv] [Code] [Code]

Applied Vision

  • 3D Shape Induction from 2D Views of Multiple Objects [arXiv]
  • Adversarial Networks for the Detection of Aggressive Prostate Cancer [arXiv]
  • Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation [arXiv]
  • Adversarial Training For Sketch Retrieval [arXiv]
  • Age Progression / Regression by Conditional Adversarial Autoencoder [arXiv]
  • Amortised MAP Inference for Image Super-resolution [arXiv]
  • ArtGAN: Artwork Synthesis with Conditional Categorial GANs [arXiv]
  • Auto-painter: Cartoon Image Generation from Sketch by Using Conditional Generative Adversarial Networks [arXiv]
  • Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis [arXiv]
  • Conditional generative adversarial nets for convolutional face generation [Paper]
  • Conditional Image Synthesis with Auxiliary Classifier GANs [Paper] [arXiv] [Code]
  • Contextual RNN-GANs for Abstract Reasoning Diagram Generation [arXiv]
  • CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training [arXiv]
  • Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks [arXiv] [Code] [Blog]
  • Deep multi-scale video prediction beyond mean square error [arXiv] [Code]
  • Deep Unsupervised Representation Learning for Remote Sensing Images [arXiv]
  • DualGAN: Unsupervised Dual Learning for Image-to-Image Translation [arXiv] [Code]
  • Full Resolution Image Compression with Recurrent Neural Networks [arXiv]
  • Generate To Adapt: Aligning Domains using Generative Adversarial Networks [arXiv]
  • Generative Adversarial Text to Image Synthesis [arXiv] [Code]
  • Generative Visual Manipulation on the Natural Image Manifold [Project] [Youtube] [Paper] [Code]
  • GP-GAN: Towards Realistic High-Resolution Image Blending [arXiv]
  • Image De-raining Using a Conditional Generative Adversarial Network [arXiv]
  • Image Generation and Editing with Variational Info Generative Adversarial Networks [arXiv]
  • Image-to-Image Translation with Conditional Adversarial Networks [arXiv] [Code]
  • Imitating Driver Behavior with Generative Adversarial Networks [arXiv]
  • Invertible Conditional GANs for image editing [arXiv] [Paper]
  • Learning a Driving Simulator [arXiv]
  • Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling [arXiv]
  • Multi-view Generative Adversarial Networks [Paper]
  • Neural Photo Editing with Introspective Adversarial Networks [Paper] [arXiv]
  • Outline Colorization through Tandem Adversarial Networks [arXiv]
  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [arXiv]
  • Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks [arXiv]
  • Recurrent Topic-Transition GAN for Visual Paragraph Generation [arXiv]
  • RenderGAN: Generating Realistic Labeled Data [arXiv]
  • SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks [arXiv]
  • SalGAN: Visual Saliency Prediction with Generative Adversarial Networks [arXiv]
  • SeGAN: Segmenting and Generating the Invisible [arXiv]
  • Semantic Segmentation using Adversarial Networks [arXiv]
  • Semi-Latent GAN: Learning to generate and modify facial images from attributes [arXiv]
  • Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks [arXiv]
  • StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks [arXiv]
  • Supervised Adversarial Networks for Image Saliency Detection [arXiv]
  • TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network [arXiv]
  • Temporal Generative Adversarial Nets [arXiv]
  • Towards Diverse and Natural Image Descriptions via a Conditional GAN [arXiv]
  • Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro [arXiv]
  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [arXiv]
  • Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks [arXiv]
  • Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery [arXiv]
  • Unsupervised Cross-Domain Image Generation [arXiv]
  • WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images [arXiv]

Applied Other

  • Adversarial Training Methods for Semi-Supervised Text Classification [arXiv] [Paper]
  • Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN [arXiv]
  • Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks [arXiv]
  • Learning to Protect Communications with Adversarial Neural Cryptography [arXiv] [Blog]
  • MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions [arXiv]
  • Reconstruction of three-dimensional porous media using generative adversarial neural networks [arXiv] [Code]
  • SEGAN: Speech Enhancement Generative Adversarial Network [arXiv]
  • Semi-supervised Learning of Compact Document Representations with Deep Networks [Paper]
  • Steganographic Generative Adversarial Networks [arXiv]

Humor

  • Stopping GAN Violence: Generative Unadversarial Networks [arXiv]

Videos

  • Generative Adversarial Networks by Ian Goodfellow [Video]
  • Tutorial on Generative Adversarial Networks by Mark Chang [Video]

Code

  • Cleverhans: A library for benchmarking vulnerability to adversarial examples [Code] [Blog]
  • Generative Adversarial Networks (GANs) in 50 lines of code (PyTorch) [Blog] [Code]
  • Generative Models: Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow [Code]

[转]GAN论文集的更多相关文章

  1. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  2. [转] ACM中国国家集训队论文集目录(1999-2009)

    国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...

  3. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  4. GAN

    GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度 3.resolution太小,大了无语义信息 4.无reference 5 ...

  5. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  6. 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...

  7. 用GAN生成二维样本的小例子

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27343585 本文完整代码地址:Generative Adversarial Networks (GANs) with ...

  8. 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...

  9. 学习笔记GAN003:GAN、DCGAN、CGAN、InfoGAN

    ​GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Gen ...

随机推荐

  1. 学 Win32 汇编[33] - 探讨 Win32 汇编的模块化编程

    我觉得所谓的模块化有两种: "假模块化" 和 "真模块化". 所谓 "假模块化" 就是通过 include 指令把 *.inc 或 *.as ...

  2. ps叠加模式笔记

    1.叠加模式:Overlay混色模式会让图层白色的部分去加亮底色,图层深色的部分去加暗底色 2.常见按钮:1)主体渐变:2)投影:3)内阴影:颜色减淡,按钮颜色,距离1,大小3:4)外发光,正片叠底,

  3. HighCharts设置图表背景透明

    其实就一句话: backgroundColor: 'rgba(0,0,0,0)' 完整示例: $(function () { $('#container').highcharts({ chart: { ...

  4. VC++ MFC应用程序项目文件

    <?xml version="1.0" encoding="utf-8"?> <Project DefaultTargets="Bu ...

  5. MogileFS与FastDFS的个人见解

    MogileFS与FastDFS的个人见解 六月 9, 2013 1 条评论 MogileFS & FastDFS 为两个开源分布式文件系统,都主要适用于互联网文件共享,上传,下载等功能,主要 ...

  6. ZH奶酪:PHP 使用DOMDocument操作XML

    原文链接:http://my.oschina.net/zhangb081511/blog/160113 PHP写XML方法很多,这里主要介绍一下DOMDocument的用法,跟 JS大体上相同,其实非 ...

  7. 共享权限ACL列表出现SID现象

    http://www.minasi.com/forum/topic.asp?TOPIC_ID=16842 Basically here's what happens, and why it doesn ...

  8. Linux中磁盘分区、格式化、挂载等管理

    1. 添加磁盘,查看磁盘状况 [root@db1 /]# fdisk -l Disk /dev/sda: bytes heads, sectors/track, cylinders Units = c ...

  9. C#通过代码调用PowerShell

    var userId = "MyAccount@XXXXX.partner.onmschina.cn"; var tenantId = "XXXXX-ca13-4bcb- ...

  10. FutureTask使用完整演示样例

    MainActivity例如以下: package cc.cv; import java.util.concurrent.FutureTask; import android.os.Bundle; i ...