[转]GAN论文集
really-awesome-gan
A list of papers and other resources on General Adversarial (Neural) Networks.
This site is maintained by Holger Caesar.
To complement or correct it, please contact me at holger-at-it-caesar.com or visit it-caesar.com. Also checkout really-awesome-semantic-segmentation and our COCO-Stuff dataset.
Overview
Workshops
Tutorials & Blogs
- How to Train a GAN? Tips and tricks to make GANs work [Blog]
- NIPS 2016 Tutorial: Generative Adversarial Networks [arXiv]
- On the intuition behind deep learning & GANs — towards a fundamental understanding [Blog]
- OpenAI - Generative Models [Blog]
- SimGANs - a game changer in unsupervised learning, self driving cars, and more [Blog]
Papers
Theory & Machine Learning
- A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models [arXiv]
- A General Retraining Framework for Scalable Adversarial Classification [Paper]
- AdaGAN: Boosting Generative Models [arXiv]
- Adversarial Autoencoders [arXiv]
- Adversarial Discriminative Domain Adaptation [arXiv]
- Adversarial Generator-Encoder Networks [arXiv]
- Adversarial Feature Learning [arXiv] [Code]
- Adversarially Learned Inference [arXiv] [Code]
- An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks [arXiv]
- Associative Adversarial Networks [arXiv]
- Autoencoding beyond pixels using a learned similarity metric [arXiv]
- BEGAN: Boundary Equilibrium Generative Adversarial Networks [Paper] [arXiv] [Code]
- Boundary-Seeking Generative Adversarial Networks [arXiv] [Code]
- Conditional Generative Adversarial Nets [arXiv] [Code]
- Connecting Generative Adversarial Networks and Actor-Critic Methods [Paper]
- C-RNN-GAN: Continuous recurrent neural networks with adversarial training [arXiv]
- Cooperative Training of Descriptor and Generator Networks [arXiv]
- Coupled Generative Adversarial Networks [arXiv] [Code]
- Deep and Hierarchical Implicit Models [arXiv]
- Energy-based Generative Adversarial Network [arXiv] [Code]
- Explaining and Harnessing Adversarial Examples [arXiv]
- f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization [arXiv] [Code]
- Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking [[arXiv]] (https://arxiv.org/abs/1704.04865)
- Generalization and Equilibrium in Generative Adversarial Nets (GANs) [arXiv]
- Generating images with recurrent adversarial networks [arXiv]
- Generative Adversarial Nets with Labeled Data by Activation Maximization [arXiv]
- Generative Adversarial Networks [arXiv] [Code] [Code]
- Generative Adversarial Networks as Variational Training of Energy Based Models [arXiv]
- Generative Adversarial Parallelization [arXiv] [Code]
- Generative Adversarial Residual Pairwise Networks for One Shot Learning [arXiv]
- Generative Adversarial Structured Networks [Paper]
- Generative Cooperative Net for Image Generation and Data Augmentation [arXiv]
- Generative Moment Matching Networks [arXiv] [Code]
- Geometric GAN [arXiv]
- Improved Techniques for Training GANs [arXiv] [Code]
- Improved Training of Wasserstein GANs [arXiv] [Code]
- InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets [arXiv] [Code]
- Inverting The Generator Of A Generative Adversarial Network [Paper]
- Learning in Implicit Generative Models [Paper]
- Learning to Discover Cross-Domain Relations with Generative Adversarial Networks [arXiv] [Code]
- Least Squares Generative Adversarial Networks [arXiv] [Code]
- Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities [arXiv]
- LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation [arXiv]
- MAGAN: Margin Adaptation for Generative Adversarial Networks [arXiv] [Code]
- Maximum-Likelihood Augmented Discrete Generative Adversarial Networks [arXiv]
- McGan: Mean and Covariance Feature Matching GAN [arXiv]
- Message Passing Multi-Agent GANs [arXiv]
- Mode Regularized Generative Adversarial Networks [arXiv] [Code]
- Multi-Agent Diverse Generative Adversarial Networks [arXiv]
- On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Networks [arXiv]
- On the Quantitative Analysis of Decoder-Based Generative Models [arXiv]
- SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient [arXiv]
- Simple Black-Box Adversarial Perturbations for Deep Networks [Paper]
- Softmax GAN [arXiv]
- Stacked Generative Adversarial Networks [arXiv]
- Training generative neural networks via Maximum Mean Discrepancy optimization [arXiv]
- Triple Generative Adversarial Nets [arXiv]
- Unrolled Generative Adversarial Networks [arXiv]
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [arXiv] [Code] [Code [Code] [Code] [Code]
- Wasserstein GAN [arXiv] [Code] [Code]
Applied Vision
- 3D Shape Induction from 2D Views of Multiple Objects [arXiv]
- Adversarial Networks for the Detection of Aggressive Prostate Cancer [arXiv]
- Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation [arXiv]
- Adversarial Training For Sketch Retrieval [arXiv]
- Age Progression / Regression by Conditional Adversarial Autoencoder [arXiv]
- Amortised MAP Inference for Image Super-resolution [arXiv]
- ArtGAN: Artwork Synthesis with Conditional Categorial GANs [arXiv]
- Auto-painter: Cartoon Image Generation from Sketch by Using Conditional Generative Adversarial Networks [arXiv]
- Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis [arXiv]
- Conditional generative adversarial nets for convolutional face generation [Paper]
- Conditional Image Synthesis with Auxiliary Classifier GANs [Paper] [arXiv] [Code]
- Contextual RNN-GANs for Abstract Reasoning Diagram Generation [arXiv]
- CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training [arXiv]
- Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks [arXiv] [Code] [Blog]
- Deep multi-scale video prediction beyond mean square error [arXiv] [Code]
- Deep Unsupervised Representation Learning for Remote Sensing Images [arXiv]
- DualGAN: Unsupervised Dual Learning for Image-to-Image Translation [arXiv] [Code]
- Full Resolution Image Compression with Recurrent Neural Networks [arXiv]
- Generate To Adapt: Aligning Domains using Generative Adversarial Networks [arXiv]
- Generative Adversarial Text to Image Synthesis [arXiv] [Code]
- Generative Visual Manipulation on the Natural Image Manifold [Project] [Youtube] [Paper] [Code]
- GP-GAN: Towards Realistic High-Resolution Image Blending [arXiv]
- Image De-raining Using a Conditional Generative Adversarial Network [arXiv]
- Image Generation and Editing with Variational Info Generative Adversarial Networks [arXiv]
- Image-to-Image Translation with Conditional Adversarial Networks [arXiv] [Code]
- Imitating Driver Behavior with Generative Adversarial Networks [arXiv]
- Invertible Conditional GANs for image editing [arXiv] [Paper]
- Learning a Driving Simulator [arXiv]
- Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling [arXiv]
- Multi-view Generative Adversarial Networks [Paper]
- Neural Photo Editing with Introspective Adversarial Networks [Paper] [arXiv]
- Outline Colorization through Tandem Adversarial Networks [arXiv]
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [arXiv]
- Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks [arXiv]
- Recurrent Topic-Transition GAN for Visual Paragraph Generation [arXiv]
- RenderGAN: Generating Realistic Labeled Data [arXiv]
- SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks [arXiv]
- SalGAN: Visual Saliency Prediction with Generative Adversarial Networks [arXiv]
- SeGAN: Segmenting and Generating the Invisible [arXiv]
- Semantic Segmentation using Adversarial Networks [arXiv]
- Semi-Latent GAN: Learning to generate and modify facial images from attributes [arXiv]
- Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks [arXiv]
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks [arXiv]
- Supervised Adversarial Networks for Image Saliency Detection [arXiv]
- TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network [arXiv]
- Temporal Generative Adversarial Nets [arXiv]
- Towards Diverse and Natural Image Descriptions via a Conditional GAN [arXiv]
- Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro [arXiv]
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [arXiv]
- Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks [arXiv]
- Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery [arXiv]
- Unsupervised Cross-Domain Image Generation [arXiv]
- WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images [arXiv]
Applied Other
- Adversarial Training Methods for Semi-Supervised Text Classification [arXiv] [Paper]
- Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN [arXiv]
- Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks [arXiv]
- Learning to Protect Communications with Adversarial Neural Cryptography [arXiv] [Blog]
- MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions [arXiv]
- Reconstruction of three-dimensional porous media using generative adversarial neural networks [arXiv] [Code]
- SEGAN: Speech Enhancement Generative Adversarial Network [arXiv]
- Semi-supervised Learning of Compact Document Representations with Deep Networks [Paper]
- Steganographic Generative Adversarial Networks [arXiv]
Humor
- Stopping GAN Violence: Generative Unadversarial Networks [arXiv]
Videos
- Generative Adversarial Networks by Ian Goodfellow [Video]
- Tutorial on Generative Adversarial Networks by Mark Chang [Video]
Code
- Cleverhans: A library for benchmarking vulnerability to adversarial examples [Code] [Blog]
- Generative Adversarial Networks (GANs) in 50 lines of code (PyTorch) [Blog] [Code]
- Generative Models: Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow [Code]
[转]GAN论文集的更多相关文章
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- [转] ACM中国国家集训队论文集目录(1999-2009)
国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- GAN
GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度 3.resolution太小,大了无语义信息 4.无reference 5 ...
- 不要怂,就是GAN (生成式对抗网络) (二)
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...
- 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...
- 用GAN生成二维样本的小例子
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27343585 本文完整代码地址:Generative Adversarial Networks (GANs) with ...
- 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...
- 学习笔记GAN003:GAN、DCGAN、CGAN、InfoGAN
GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Gen ...
随机推荐
- Java-JUC(八):使用wait,notify|notifyAll完成生产者消费者通信,虚假唤醒(Spurious Wakeups)问题出现场景,及问题解决方案。
模拟通过线程实现消费者和订阅者模式: 首先,定义一个店员:店员包含进货.卖货方法:其次,定义一个生产者,生产者负责给店员生产产品:再者,定义一个消费者,消费者负责从店员那里消费产品. 店员: /** ...
- 使用nginx反向代理到不同服务器(共享同一端口)配置文件
使用nginx反向代理到不同服务器(共享同一端口)配置文件 https://blog.csdn.net/wang_k_123/article/details/72779443 https://www. ...
- nodejs发送请求
const https = require('https'); var options = { hostname: 'registry.yarnpkg.com', port: 443, path: ' ...
- POJ 3009:Curling 2.0 推箱子
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14090 Accepted: 5887 Desc ...
- background-size中contain和cover中的数学公式
background-size的contain和cover是怎么用的,大家应该都明白.但是里面也有一些有趣的数学关系. 基本概念 上面就是我们对于 rimage (图片宽高比).rviewport ( ...
- OSX系统的sublime配置php执行编译
OSX系统的sublime配置php执行编译 1).进入如下菜单 2)弹出内容如下: { "cmd": ["make"] } 修改为: { "cmd& ...
- Tomcat的性能与最大并发配置
当一个进程有 500 个线程在跑的话,那性能已经是很低很低了.Tomcat 默认配置的最大请求数是 150,也就是说同时支持 150 个并发,当然了,也可以将其改大. 当某个应用拥有 250 个以上并 ...
- 在Windows中监视IO性能
附:在Windows中监视IO性能 本来准备写一篇windows中监视IO性能的,后来发现好像可写的内容不多,windows在细节这方面做的不是那么的好,不过那些基本信息还是有的. 在Windows中 ...
- Linux中查看系统版本的方法
一.Linux系统中,XShell连接进去之后,查看系统版本的方法如下: 1.查找release文件 find /etc/ -name *-release 例如: 或者 2.查看release文件 c ...
- js 开源k线图开发库
https://github.com/andredumas/techan.js/wiki http://techanjs.org/ A visual, stock charting (Candlest ...