寻宝游戏(bzoj 3991)
Description
小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达。游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止。小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程。但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小B需要不断地更新数据,但是小B太懒了,不愿意自己计算,因此他向你求助。为了简化问题,我们认为最开始时所有村庄内均没有宝物
Input
第一行,两个整数N、M,其中M为宝物的变动次数。
Output
M行,每行一个整数,其中第i行的整数表示第i次操作之后玩家找到所有宝物需要行走的最短路程。若只有一个村庄内有宝物,或者所有村庄内都没有宝物,则输出0。
Sample Input
1 2 30
2 3 50
2 4
60
2
3
4
2
1
Sample Output
100
220
220
280
HINT
1<=N<=100000
/*
建立一颗虚树,然后求虚树上的2倍边权和。
由于每次只增加或减少一个点,所以可以用set维护一个dfn的单调递增序列,
每次增添一个点时,将它与相邻节点的距离加上(头和尾也算相邻),再将前后的点间距减去。
删除同理。
*/
#include<iostream>
#include<cstdio>
#include<set>
#define N 100010
#define inf 1000000000
#define lon long long
using namespace std;
int head[N],dep[N],fa[N][],g[N],dfn[N],id[N],n,m,cnt,tot;
lon dis[N],ans;
struct node{int v,w,pre;}e[N*];
void add(int u,int v,int w){
e[++cnt].v=v;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
}
void dfs(int x){
dfn[x]=++tot;id[tot]=x;
for(int i=head[x];i;i=e[i].pre)
if(e[i].v!=fa[x][]){
dep[e[i].v]=dep[x]+;
dis[e[i].v]=dis[x]+e[i].w;
fa[e[i].v][]=x;
dfs(e[i].v);
}
}
int LCA(int a,int b){
if(dep[a]<dep[b]) swap(a,b);
int t=dep[a]-dep[b];
for(int i=;~i;i--)
if(t&(<<i)) a=fa[a][i];
if(a==b) return a;
for(int i=;~i;i--)
if(fa[a][i]!=fa[b][i])
a=fa[a][i],b=fa[b][i];
return fa[a][];
}
lon calc(int a,int b){
int anc=LCA(a,b);
return dis[a]+dis[b]-*dis[anc];
}
set<int> st;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);
add(u,v,w);add(v,u,w);
}
dfs();
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
fa[i][j]=fa[fa[i][j-]][j-];
st.insert(-inf);st.insert(inf);
for(int i=;i<=m;i++){
int x;scanf("%d",&x);g[x]^=;
long long t;
if(g[x]) st.insert(dfn[x]),t=;else st.erase(dfn[x]),t=-;
int l=*--st.lower_bound(dfn[x]),r=*st.upper_bound(dfn[x]);
if(l!=-inf) ans+=t*calc(id[l],x);
if(r!=inf) ans+=t*calc(id[r],x);
if(l!=-inf&&r!=inf) ans-=t*calc(id[l],id[r]);
lon tmp=;
if(st.size()>)
tmp=calc(id[*st.upper_bound(-inf)],id[*--st.lower_bound(inf)]);
printf("%lld\n",ans+tmp);
}
return ;
}
寻宝游戏(bzoj 3991)的更多相关文章
- bzoj 3991: [SDOI2015]寻宝游戏 虚树 set
目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...
- 【BZOJ】【3991】【SDOI2015】寻宝游戏
dfs序 我哭啊……这题在考试的时候(我不是山东的,CH大法吼)没想出来……只写了50分的暴力QAQ 而且苦逼的写的比正解还长……我骗点分容易吗QAQ 骗分做法: 1.$n,m\leq 1000$: ...
- 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...
- bzoj 3991: [SDOI2015]寻宝游戏
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...
- BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...
- [BZOJ 3991][SDOI2015]寻宝游戏(dfs序)
题面 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...
- BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)
BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...
- 3991: [SDOI2015]寻宝游戏
3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...
- 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)
[BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...
随机推荐
- 微信网页授权access_token与基础支持的access_token
问题1:网页授权access_token与分享的jssdk中的access_token一样吗? 答:不一样.网页授权access_token 是一次性的,而基础支持的access_token的是有时间 ...
- 解决方法:SQL Server 检测到基于一致性的逻辑 I/O 错误 校验和不正(转载)
引用:http://luowei1371984.blog.163.com/blog/static/44041589201491844323885/ SQL2008运行select count(*) f ...
- php生成微信小程序二维码源码
目前有3个接口可以生成小程序码,开发者可以根据自己的需要选择合适的接口.第一步:获取 access_token public function getWxAccessToken(){ $appid ...
- PHP递归操作
对于php的递归操作解释说明,递归基本上是学习每种语言都要会的最基本的操作.来吧,下面是我闲的时候随便写的一个对数组进行遍历操作的一个递归函数. 原理很简单,递归就是在一个函数里面调用自身的一种机制. ...
- SQL-批量插入和批量更新
批量插入 表结构一样或类似 如果两张表的结构一样,例如一个表的结构和另一个表的结构一样,只是其中一张是临时表,而另一张表是存储数据的表,我们需要进行一次表的迁移的话,我们可以这样. insert in ...
- PLC状态机编程第四篇-历史状态处理
今天我们接着上次的控制任务,加入历史状态,这个任务会比较复杂,象这样的任务我们倾向于自动生成PLC程序,自己写容易出错.但为了演示,我们可以尝试一下.言归正传,下面是我们的控制任务. 控制任务 这次的 ...
- 学习python第十一天,函数3 函数的序列化和反序列化
我们把变量从内存中变成可存储或传输的过程称之为序列化,序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上. 反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unp ...
- Python中的str
str_lst = [ ('元素替换',), ('字符串切片',), ('字符串分割',), ('字符串连接',), ('元素计数',), ('寻找元素',), ('判断字符串的开头与结尾',), ( ...
- [CodeChef]RIN(最小割)
Description 有m门课可以在n个学期内学习,第i门课在第j个学期的收益是\(X_{i,j}\),一个学期可以学多门课,有的课之间有依赖关系,即必须先学a再学b,求最大收益.n,m<= ...
- PHP.TP框架下商品项目的优化3-php封装下拉框函数
php封装下拉框函数 因为在项目中会经常使用到下拉框,所以根据一个表中的数据制作下拉框函数,以便调用 //使用一个表的数据做下拉框函数 function buildSelect($tableName, ...