题目传送门

前置知识

扩展欧拉定理

解法

本题幂塔是有限层的,这里与 luogu P4139 上帝与集合的正确用法 中的无限层幂塔不同,故需要在到达递归边界 \(n+1\) 时进行特殊处理,对于处理 \(\varphi(p)\) 在递归过程中等于 \(1\) 的情况两题基本一致。

回忆扩展欧拉定理中的 \(b\) 和 \(\varphi(p)\) 的关系,如果我们按照 常规的快速幂写法 会出现问题,即我们无法正确判断 \(a^b\) 在作为下一次运算的指数时和 \(\varphi(p)\) 之间的大小关系,这就需要我们额外在快速幂的过程中判断 \(a^b\) 和 \(\varphi(p)\) 之间的大小关系。

  • 在这里可以使用 __int128_t 来代替实现高精度的快速幂。

另外由于本题的特殊规定 \(0^0=1\),故需要在当 \(a=0\) 时,对 \(b\) 的奇偶性进行判断。手模几组样例,发现结论挺显然的。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll __int128_t
#define sort stable_sort
#define endl '\n'
ll read()
{
ll x=0,f=1;
char c=getchar();
while(c>'9'||c<'0')
{
if(c=='-')
{
f=-1;
}
c=getchar();
}
while('0'<=c&&c<='9')
{
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
ll phi(ll n)
{
ll ans=n,i;
for(i=2;i<=sqrtl(n);i++)//因为使用了__int128_t,为防止CE便使用了sqrtl,亦可以写成i*i<=n的形式
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0)
{
n/=i;
}
}
}
if(n>1)
{
ans=ans/n*(n-1);
}
return ans;
}
ll qpow(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1)
{
ans=ans*a;
if(ans>=p)//快速幂特殊处理1
{
ans=ans%p+p;
}
}
b>>=1;
a=a*a;
if(a>=p)//快速幂特殊处理2
{
a=a%p+p;
}
}
return ans;
}
ll f(ll i,ll n,ll p,ll a)
{
return (i==n+1||p==1)?1:qpow(a,f(i+1,n,phi(p),a),p);//对幂塔进行递归
}
int main()
{
ll t,a,b,i,p=1000000000,ans;
t=read();
for(i=1;i<=t;i++)
{
a=read();
b=read();
if(a==0)
{
if(b%2==0)
{
printf("1\n");
}
else
{
printf("0\n");
}
}
else
{
ans=f(1,b,p,a);
if(ans<p)
{
printf("%lld\n",ans);//因为最后结果小于1000000000,所以可以放心大胆地当作long long输出
}
else
{
printf("...%09lld\n",ans%p);//因为最后结果小于1000000000,所以可以放心大胆地当作long long输出
}
}
}
return 0;
}

SP10050 POWTOW - Power Tower City 题解的更多相关文章

  1. 【CodeForces】906 D. Power Tower 扩展欧拉定理

    [题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...

  2. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  3. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  4. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  5. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

  6. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  7. bzoj3125: CITY 题解

    3125: CITY Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 486  Solved: 213[Submit][Status][Discuss] ...

  8. D - Power Tower欧拉降幂公式

    题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...

  9. Power Strings[poj2406]题解

    Power Strings Description - Given two strings a and b we define ab to be their concatenation. For ex ...

  10. ZOJ 3195 Design the city 题解

    这个题目大意是: 有N个城市,编号为0~N-1,给定N-1条无向带权边,Q个询问,每个询问求三个城市连起来的最小权值. 多组数据 每组数据  1 < N < 50000  1 < Q ...

随机推荐

  1. 机器学习-决策树系列-Adaboost算法-集成学习-29

    目录 1. adaboost算法的基本思想 2. 具体实现 1. adaboost算法的基本思想 集成学习是将多个弱模型集成在一起 变成一个强模型 提高模型的准确率,一般有如下两种: bagging: ...

  2. 机器学习-线性分类-支持向量机SVM-软间隔-核函数-13

    目录 1. 总结 SVM 2. 软间隔svm 4. 核函数 1. 总结 SVM SVM算法的基础是感知器模型, 感知器模型 与 逻辑回归的不同之处? 逻辑回归 sigmoid(θx) 映射到 0-1之 ...

  3. 每天学五分钟 Liunx 100 | 存储篇:磁盘分区

    这一节主要介绍 Liunx 是怎么用磁盘的. 磁盘分区 在 Liunx 中一切皆文件,磁盘在 Liunx 中也是文件,包括 /dev/hd[a-d](以 IDE 为接口) 和 /dev/sd[a-p] ...

  4. SV Interface and Program 2

    Clocking:激励的时序 memory检测start信号,当start上升沿的时候,如果write信号拉高之后,将data存储到mem中 start\write\addr\data - 四个信号是 ...

  5. MySQL重建表统计信息

    MySQL重建表统计信息 背景 最近一段时间遇到了一些性能问题 发现很多其实都是由于 数据库的索引/统计信息不准确导致的问题. Oracle和SQLServer都遇到了很多类似的问题. 我这边联想到 ...

  6. [转帖]5. Tikv安装部署

    5. Tikv安装部署 5.1. 概述 TiDB 是 PingCAP 公司自主设计.研发的开源分布式关系型数据库,是一款同时支持在线事务处理与在线分析处理 (Hybrid Transactiona ...

  7. [转帖]文件操作之zip、bzip2、gzip、tar命令

    文件操作之zip.bzip2.gzip.tar命令 原创 丁同学19902015-10-15 00:02:51博主文章分类:liunx基础著作权 文章标签linux tarlinux文件压缩linux ...

  8. [转帖]ESXi下查看CPU 频率

    https://www.jianshu.com/p/8943a4223ed7 查看CPU的固定频率 [root@localhost:/bin] esxcli hardware  cpu list|gr ...

  9. [转帖]Redis Scan 原理解析与踩坑

    https://www.cnblogs.com/jelly12345/p/16424080.html 1. 概述由于 Redis 是单线程在处理用户的命令,而 Keys 命令会一次性遍历所有 Key, ...

  10. Unity下调试ToLua(基于IDEA和VSCode)

    公司移动端项目是基于Unity的,底层支持由C#提供,上层Lua调用C#中注册的函数支持来做业务逻辑,框架用的是ToLua.开始做移动端有一段时间了,一直都觉得调试代码是个很蛋疼的体验:几乎都是靠肉眼 ...