基于一维卷积神经网络模型的AI量化智能选股策略
这是早前BigQuant专题研究:基于卷积神经网络CNN的深度学习因子选股模型。卷积神经网络(Convolutional Neural Network, CNN),是计算机视觉研究和应用领域中最具影响力的模型之一。同样,如果将时间看作一个空间维度,类似于二维图像的高度或宽度,CNN也可以对时间序列处理产生令人惊喜的效果。本文首先大致介绍了CNN的原理,然后详细解释了一维CNN模型如何进行应用于时间序列并进行特征选取,最后以一个实例展示一维CNN模型在因子选股方面的应用。
目录
1.CNN原理介绍
1.1 反向传播算法
1.2 CNN图像识别原理
2.一维CNN在时间序列中的应用
2.1 一维卷积
2.2 一维池化
3.实例:CNN模型选股
1.CNN原理介绍
1.1 反向传播算法
反向传播(Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度,这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。 一句话解释:前向传递输入信号直至输出产生误差,反向传播误差信息更新权重矩阵。 以没有隐层的神经网络为例,如逻辑回归,其中小黄帽代表输出层节点,左侧接受输入信号,右侧产生输出结果,小蓝猫则代表了误差,指导参数往更优的方向调整。由于小蓝猫可以直接将误差反馈给小黄帽,同时只有一个参数矩阵和小黄帽直接相连,所以可以直接通过误差进行参数优化(实线),迭代几轮,误差会降低到最小。

图1:无隐层反向传播算法示意 图1:无隐层反向传播算法示意
1.2 CNN图像识别原理
卷积神经网络的结构模仿了眼睛的视觉神经的工作原理。对于眼睛来说,大量的视觉神经分工协作,各自负责一小部分区域的视觉图像,再将图像的各种局部特征抽象组合到高层的视觉概念,传送到大脑使人类产生视觉。卷积神经网络也是类似,它包含了至少一层卷积层,由多个卷积核对图像的局部区域进行特征提取,最后进行合成。 以经典的LeNet-5模型为例:

图2:LeNet−5卷积神经网络模型 原始输入数据(图1中的input)为二维图像,横轴和纵轴分别是图像的高度和宽度的像素点,为了识别该图像,模型依次完成以下步骤: 第一层卷积层(图1中的conv1)进行卷积运算。该层由若干卷积核组成,每个卷积核的参数都是通过反向传播算法优化得到的。卷积核的目的是通过扫描整张图片提取不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级。在卷积层之后都会使用非线性激活函数(如RELU,tanh 等)对特征进行非线性变换。第一层池化层(图1中的pool1)进行池化运算。通常在卷积层之后会得到维度很大的特征,池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量。使用池化层既可以加快计算速度也有防止过拟合的作用。一般池化层将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。池化层其实是在对具有高维特征的图片进行特征降维(subsample)。第二层卷积层和第二层池化层(图1中的conv2 和pool2) 进行进一步的特征提取和特征降维,得到更加高层和抽象的特征。全连接层(图1中的hidden4 和full connection) 把卷积核池化得到的特征展平为一维特征,用来进行最后的训练和预测。 总结而言,卷积层进行特征提取,池化层进行特征降维以防止过拟合。CNN通过上述过程实现了图像识别:

图3:CNN图像识别
通过第一层卷积识别边缘等低级特征,池化后通过第二层卷积识别眼睛、鼻子等小区域器官这样的中级特征,池化,最后通过第三层卷积识别整个面容这样的高级特征,最后通过全连接层整合,识别出最终的图像。
2.一维CNN在时间序列中的应用
CNN最主要应用于计算机视觉领域,通过卷积运算,从二维图像中提取特征,最终实现优秀的图像识别功能。对于这样一种优秀的算法,我们自然会思考如何将其运用到时间序列分析中。很容易想到,有两种思路: 将一维的时间序列二维化。考虑历史截面期,将每个样本的特征数据组织成二维形式,尝试构建“特征图片”。如总共有3000个样本,每个样本有10个特征,那就考虑5个截面期,每个样本整合5个截面得到一张“特征图片”,用时间数据作为图片标签。如此,可以得到3000个带时间特征的图片,然后运用二维CNN处理。这种方法的具体实现可参见华泰证券的研报《人工智能选股之卷积神经网络》探索一维CNN在时间序列上的运用。本篇研究就是基于这个思路。如果将时间理解为图像的长或者宽,其他特征理解为一个维度,那么就可以用一维CNN进行处理。
2.1 一维卷积
一维卷积,也就是从序列中按照一定大小的窗口提取局部一维序列段(即子序列),然后与一个权重做点积,然后输出为新序列上的一个部分。以大小为5的时间窗口为例:

图4:一维CNN的一层卷积示意
2.2 一维池化
同二维池化一样,一维池化的目的也是为了对卷积的结果“模糊化”,归纳局部区域内的统计特征,并且通过降维避免过拟合。一维池化是从输入中提取一维序列段(即子序列), 然后输出其最大值(最大池化)或平均值(平均池化),降低一维输入的长度(子采样)。
3.实例:CNN模型选股

图5:CNN智能选股策略 如图5所示,一维CNN选股策略构建包含下列步骤:
获取数据 :A股所有股票。
特征和标签提取 :计算7个因子作为样本特征;计算第2日的个股收益,极值处理后分成20类作为标签。
特征预处理 :进行缺失值处理;去掉特征异常的股票,比如某个特征值高于99.5%或低于0.5%的;标准化处理,去除特征量纲/数量级差异的影响。
序列窗口滚动 :窗口大小设置为5,滚动切割。
搭建CNN模型 :构建一个简单的两层一维卷积神经网络预测股票价格。
模型训练与预测 :使用CNN模型进行训练和预测;可以尝试多种激活函数,策略默认为relu。
策略回测 :利用2010到2014年数据进行训练,预测2015到2017年的股票表现。每日买入预测排名最靠前的20只股票,至少持有2日,同时淘汰排名靠后的股票。具体而言,预测排名越靠前,分配到的资金越多且最大资金占用比例不超过20%;初始5日平均分配资金,之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)。
模型评价 :查看模型回测结果。 一维CNN模型的参数如下:
输入数据:输入是形状为 (samples, time, features)的三维张量,并返回类似形状的三维张量。卷积窗口是时间轴上的一维窗口(时间轴是输入张量的第二个轴)。7个因子,时间窗口为5,因此输入7*5的一个矩阵。
卷积层:2层一维卷积层(Conv1D层),每层包含20 个卷积核。激活函数采用relu。同时选择“valid”参数,只进行有效卷积,对边界数据不处理。卷积核权重使用glorot_uniform初始化方法,偏置向量使用Zeros初始化方法。
池化层:2层池化层。
全连接层:激活函数linear。权重使用glorot_uniform初始化方法,偏置向量使用Zeros初始化方法。
训练次数率:epochs值为5,共训练5轮,以mae作为评估指标。
优化器和:RMSProp。损失函数:均方误差MSE。 预测结果如下:

图6:CNN模型预测结果
回测结果如下:

图7:CNN模型回测结果
可以看到,CNN的回测结果还是非常惊喜的,相比于基准收益有着非常突出的表现。所以,我们认为将CNN卷积神经网络应用于资本市场因子选股是很有前景的。在本次的策略中,我们运用了两层的一维CNN模型,具体的卷积层数、模型参数有非常大的调整空间,欢迎大家尝试。 策略克隆:
【专题研究】基于一维CNN模型的智能选股策略 - 策略&研究 - AI量化投资社区 - BigQuant
基于一维卷积神经网络模型的AI量化智能选股策略的更多相关文章
- 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...
- 使用PyTorch简单实现卷积神经网络模型
这里我们会用 Python 实现三个简单的卷积神经网络模型:LeNet .AlexNet .VGGNet,首先我们需要了解三大基础数据集:MNIST 数据集.Cifar 数据集和 ImageNet 数 ...
- CNN-1: LeNet-5 卷积神经网络模型
1.LeNet-5模型简介 LeNet-5 模型是 Yann LeCun 教授于 1998 年在论文 Gradient-based learning applied to document ...
- 利用Tensorflow实现卷积神经网络模型
首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一 ...
- 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...
- CNN-3: VGGNet 卷积神经网络模型
1.VGGNet 模型简介 VGG Net由牛津大学的视觉几何组(Visual Geometry Group)和 Google DeepMind公司的研究员一起研发的的深度卷积神经网络,在 ILSVR ...
- CNN-2: AlexNet 卷积神经网络模型
1.AlexNet 模型简介 由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大 ...
- CNN-4: GoogLeNet 卷积神经网络模型
1.GoogLeNet 模型简介 GoogLeNet 是2014年Christian Szegedy提出的一种全新的深度学习结构,该模型获得了ImageNet挑战赛的冠军. 2.GoogLeNet 模 ...
- caffe中LetNet-5卷积神经网络模型文件lenet.prototxt理解
caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "Le ...
- 吴裕雄--天生自然python Google深度学习框架:经典卷积神经网络模型
import tensorflow as tf INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABEL ...
随机推荐
- mall :rabbit项目源码解析
目录 一.mall开源项目 1.1 来源 1.2 项目转移 1.3 项目克隆 二.RabbitMQ 消息中间件 2.1 rabbit简介 2.2 分布式后端项目的使用流程 2.3 分布式后端项目的使用 ...
- 用OLED屏幕播放视频(3): 使用cuda编程加速视频处理
下面的系列文章记录了如何使用一块linux开发扳和一块OLED屏幕实现视频的播放: 项目介绍 为OLED屏幕开发I2C驱动 使用cuda编程加速视频处理 这是此系列文章的第3篇, 主要总结和记录了如何 ...
- 记一次 .NET 某餐饮小程序 内存暴涨分析
一:背景 1. 讲故事 前些天有位朋友找到我,说他的程序内存异常高,用 vs诊断工具 加载时间又太久,让我帮忙看一下到底咋回事,截图如下: 确实,如果dump文件超过 10G 之后,市面上那些可视化工 ...
- 在线问诊 Python、FastAPI、Neo4j — 创建 节点关系
目录 关系:症状-检查 关系:疾病-症状 代码重构 relationship_data.csv 症状,检查,疾病,药品,宜吃,忌吃 "上下楼梯疼,不能久站,感觉有点肿"," ...
- HTTPS相比HTTP为什么安全
HTTPS(超文本传输协议[安全]) 1.HTTPS为什么叫安全的超文本传输协议 在HTTPS中,S是Security的意思,是安全的意思,而HTTP是超文本传输协议,这就不得不谈起HTTP在安全方面 ...
- Python面向对象——反射(hasattr、getattr、setattr、delattr)、内置方法(__str__和__del__)、元类(介绍,创建类的流程,exec,自定义元类)、属性查找
文章目录 反射 内置方法 __str__方法 __del__函数 元类 元类介绍 class关键字创建类的流程分析 补充:exec的用法 自定义元类控制类StanfordTeacher的创建 自定义元 ...
- Stable-diffusion WebUI API调用方法
写这篇文章的主要原因是工作中需要写一个用训练好的模型批量生图的脚本,开始是想用python直接加载模型,但后来发现webui的界面中有不少好用的插件和参数,所以最终改成调用WebUI接口的方式来批量生 ...
- Redis 7.0 源码环境搭建与阅读技巧
天下武功,无坚不摧,唯快不破!我的名字叫 Redis,全称是 Remote Dictionary Server. 有人说,组 CP,除了要了解她外,还要给机会让她了解你. 那么,作为开发工程师的你,是 ...
- 数据结构与算法(LeetCode)第一节:认识复杂度,对数器,二分法与异或运算
一.认识复杂度 1.评估算法优劣的核心指标: 时间复杂度:当完成了表达式的建立,只要把最高阶项留下即可.低阶项都去掉,高阶项的系数也去掉,记为O(去掉系数的高阶项): 时间复杂度是衡量算法流程的复 ...
- 【Spring】AOP实现原理
注册AOP代理创建器 在平时开发过程中,如果想开启AOP,一般会使用@EnableAspectJAutoProxy注解,这样在启动时,它会向Spring容器注册一个代理创建器用于创建代理对象,AOP使 ...