Codeforces Round #238 (Div. 2) D. Toy Sum(想法题)
Description
Little Chris is very keen on his toy blocks. His teacher, however, wants Chris to solve more problems, so he decided to play a trick on Chris.
There are exactly s blocks in Chris's set, each block has a unique number from 1 to s. Chris's teacher picks a subset of blocks X and keeps it to himself. He will give them back only if Chris can pick such a non-empty subset Y from the remaining blocks, that the equality holds:
"Are you kidding me?", asks Chris.
For example, consider a case where s = 8 and Chris's teacher took the blocks with numbers 1, 4 and 5. One way for Chris to choose a set is to pick the blocks with numbers 3 and 6, see figure. Then the required sums would be equal: (1 - 1) + (4 - 1) + (5 - 1) = (8 - 3) + (8 - 6) = 7.

However, now Chris has exactly s = 106 blocks. Given the set X of blocks his teacher chooses, help Chris to find the required set Y!
Input
The first line of input contains a single integer n (1 ≤ n ≤ 5·105), the number of blocks in the set X. The next line contains n distinct space-separated integers x1, x2, ..., xn (1 ≤ xi ≤ 106), the numbers of the blocks in X.
Note: since the size of the input and output could be very large, don't use slow output techniques in your language. For example, do not use input and output streams (cin, cout) in C++.
Output
In the first line of output print a single integer m (1 ≤ m ≤ 106 - n), the number of blocks in the set Y. In the next line output m distinct space-separated integers y1, y2, ..., ym (1 ≤ yi ≤ 106), such that the required equality holds. The sets X and Y should not intersect, i.e. xi ≠ yj for all i, j (1 ≤ i ≤ n; 1 ≤ j ≤ m). It is guaranteed that at least one solution always exists. If there are multiple solutions, output any of them.
Sample Input
31 4 5
11
Sample Output
2999993 1000000
11000000
思路
题意:
从 1 ~ 1000000 中选择 n 个数:x1,x2,...,xn,对 x1-1,x2-1,...xn-1 求和得s1。然后在 1 ~ 1000000 中除已经选择过的n个数中选择一些数,假设为y1, y2,...ym,设s = 1000000,对s-y1,s-y2,...,s-ym求和,如果这个和与s1相等,则输出y1,y2,...,ym
题解:
换个角度思考,由于集合X中:x1,x2,...,xn 是各不相同的,那么在S - X,设为Y(假定S是全集:1,2,...,n)对每个数xi(i : 1 ~ n)一定有相应的s-i+1与之对应(前提是,如果S-xi不在集合X中);如果有相应的s-xi+1在X中,那么可以找没有选择过的yj,s-yj+1来替换xi, s-xi+1。例如X中有 100, 999901而没有99, 999902,那么可以选择99, 999902来替代。效果是相同的。这样Y中的数量跟n是相同的。
官方题解:
Let's define the symmetric number of k to be s + 1 - k. Since in this case s is an even number, k ≠ s - k.
Note that (k - 1) + (s + 1 - k) = s, i.e., the sum of a number and its symmetric is always s. Let's process the given members x of X. There can be two cases:
- If the symmetric of x does not belong to X, we add it to Y. Both give equal values to the respective sums: x - 1 = s - (s + 1 - x).
- The symmetric of x belongs to X. Then we pick any y that neither y and symmetric of y belong to X, and add them to Y. Both pairs give equal values to the respective sums, namely s.
How to prove that in the second step we can always find such y? Let the number of symmetric pairs that were processed in the step 1 be a, then there remain
other pairs. Among them, for
pairs both members belong to X, and for other
pairs none of the members belong to X. To be able to pick the same number of pairs for Y, as there are in X, we should have

which is equivalent to
, as given in the statement.
Solution complexity: O(s) / O(n).
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1000000;
int vis[1000005];
int main()
{
int N;
while (~scanf("%d",&N))
{
memset(vis,0,sizeof(vis));
int tmp,cnt = 0;
bool first = true;
for (int i = 0;i < N;i++)
{
scanf("%d",&tmp);
vis[tmp] = 1;
}
printf("%d\n",N);
for (int i = 1;i <= maxn;i++)
{
if (vis[i] && !vis[maxn+1-i])
{
first?printf("%d",maxn+1-i):printf(" %d",maxn+1-i);
first = false;
cnt++;
}
}
for (int i = 1;i <= maxn && cnt != N;i++)
{
if (!vis[i] && !vis[maxn+1-i])
{
printf(" %d %d",i,maxn+1-i);
cnt += 2;
}
}
printf("\n");
}
return 0;
}
Codeforces Round #238 (Div. 2) D. Toy Sum(想法题)的更多相关文章
- Codeforces Round #238 (Div. 2) D. Toy Sum 暴搜
题目链接: 题目 D. Toy Sum time limit per test:1 second memory limit per test:256 megabytes 问题描述 Little Chr ...
- Codeforces Round #238 (Div. 2) D. Toy Sum
D. Toy Sum time limit per test:1 second memory limit per test:256 megabytes input:standard input o ...
- Codeforces Round #303 (Div. 2) A. Toy Cars 水题
A. Toy Cars Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/problem ...
- 水题 Codeforces Round #303 (Div. 2) A. Toy Cars
题目传送门 /* 题意:5种情况对应对应第i或j辆车翻了没 水题:其实就看对角线的上半边就可以了,vis判断,可惜WA了一次 3: if both cars turned over during th ...
- Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)
Problem Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...
- Codeforces Round #575 (Div. 3) 昨天的div3 补题
Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...
- Codeforces Round #367 (Div. 2) A. Beru-taxi (水题)
Beru-taxi 题目链接: http://codeforces.com/contest/706/problem/A Description Vasiliy lives at point (a, b ...
- Codeforces Round #238 (Div. 1)
感觉这场题目有种似曾相识感觉,C题还没看,日后补上.一定要坚持做下去. A Unusual Product 题意: 给定一个n*n的01矩阵,3种操作, 1 i 将第i行翻转 2 i 将第i列翻转 3 ...
- Codeforces Round #334 (Div. 2) A. Uncowed Forces 水题
A. Uncowed Forces Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/604/pro ...
随机推荐
- 使用 Async 和 Await 的异步编程(C# 和 Visual Basic)[msdn.microsoft.com]
看到Microsoft官方一篇关于异步编程的文章,感觉挺好,不敢独享,分享给大家. 原文地址:https://msdn.microsoft.com/zh-cn/library/hh191443.asp ...
- 可扩展的事件复用技术:epoll和kqueue
通常来说我喜欢Linux更甚于BSD系统,但是我真的想在Linux上拥有BSD的kqueue功能. 什么是事件复用技术 假设你有一个简单的web服务器,并且那里已经打开了两个socket连接.当服务器 ...
- Nagios学习实践系列——配置研究[监控当前服务器]
其实上篇Nagios学习实践系列——基本安装篇只是安装了Nagios基本组件,虽然能够打开主页,但是如果不配置相关配置文件文件,那么左边菜单很多页面都打不开,相当于只是一个空壳子.接下来,我们来学习研 ...
- stm32 hid 键盘描述
/* USB Standard Device Descriptor */ const uint8_t Joystick_DeviceDescriptor[JOYSTICK_SIZ_DEVICE_DES ...
- ELF Format 笔记(十三)—— 段权限
ilocker:关注 Android 安全(新手) QQ: 2597294287 一个可被系统加载的程序至少拥有一个可加载段.当系统创建可加载段的内存映像时,会根据 p_flags 赋予一定的访问权限 ...
- Linux 目录相关命令(1)
1:分区 分区是指逻辑分区,主分区最多四个,由硬盘结构决定 windows里A和B做软驱判定,C主分区判定 1.硬盘分为若干个等大的扇区 每个扇区默认512字节,其中446字节用于启动信息,64字节用 ...
- [bootsrap]模态框使用例
<a href="#modal1" role="button" class="btn btn-primary btn-sm" data ...
- ISCC2016 WriteUp
日期: 2016-05-01~ 注:隔了好久才发布这篇文章,还有两道Pwn的题没放,过一阵子放上.刚开始做这个题,后来恰巧赶上校内CTF比赛,就把重心放在了那个上面. 这是第一次做类似于CTF的题,在 ...
- 你不知道的Javascript(上卷)读书笔记之二 ---- 词法作用域
在前一篇文章中,我们把作用域定义为"管理.维护变量的一套规则",接下来是时候来深入讨论一下Js的作用域问题了,首先我们要知道作用域一般有两种主要的工作类型,一种是词法作用域,一种是 ...
- 理解ThreadLocal(之二)
想必很多朋友对ThreadLocal并不陌生,今天我们就来一起探讨下ThreadLocal的使用方法和实现原理.首先,本文先谈一下对ThreadLocal的理解,然后根据ThreadLocal类的源码 ...