Description

Tom is a commander, his task is destroying his enemy’s transportation system.

Let’s represent his enemy’s transportation system as a simple directed graph G with n nodes and m edges. Each node is a city and each directed edge is a directed road. Each edge from node u to node v is associated with two values D and B, D is the cost to destroy/remove such edge, B is the cost to build an undirected edge between u and v.

His enemy can deliver supplies from city u to city v if and only if there is a directed path from u to v. At first they can deliver supplies from any city to any other cities. So the graph is a strongly-connected graph.

He will choose a non-empty proper subset of cities, let’s denote this set as S. Let’s denote the complement set of S as T. He will command his soldiers to destroy all the edges (u, v) that u belongs to set S and v belongs to set T.

To destroy an edge, he must pay the related cost D. The total cost he will pay is X. You can use this formula to calculate X:

After that, all the edges from S to T are destroyed. In order to deliver huge number of supplies from S to T, his enemy will change all the remained directed edges (u, v) that u belongs to set T and v belongs to set S into undirected edges. (Surely, those edges exist because the original graph is strongly-connected)

To change an edge, they must remove the original directed edge at first, whose cost is D, then they have to build a new undirected edge, whose cost is B. The total cost they will pay is Y. You can use this formula to calculate Y:

At last, if Y>=X, Tom will achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks you if there is a set S, such that Y<X. If such set exists, he will feel unhappy, because he must choose set S carefully, otherwise he will become very happy.

Input

There are multiply test cases.

The first line contains an integer T(T<=200), indicates the number of cases.

For each test case, the first line has two numbers n and m.

Next m lines describe each edge. Each line has four numbers u, v, D, B. 
(2=<n<=200, 2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)

The meaning of all characters are described above. It is guaranteed that the input graph is strongly-connected.

Output

For each case, output "Case #X: " first, X is the case number starting from 1.If such set doesn’t exist, print “happy”, else print “unhappy”.

Sample Input

2
3 3
1 2 2 2
2 3 2 2
3 1 2 2
3 3
1 2 10 2
2 3 2 2
3 1 2 2

Sample Output

Case #1: happy
Case #2: unhappy
Hint

In first sample, for any set S, X=2, Y=4. In second sample. S= {1}, T= {2, 3}, X=10, Y=4.

Source

2014 Multi-University Training Contest 7
 
先来一个错误但是AC了(数据水)的算法:

每个点单独作为S集合时,如果存在满足Y<X,就输出unhappy。否则输出happy。

 

为什么错呢?输出happy时,即两个点单独作为S时,都有Y1>=X1,Y2>=X2,如果两个点之间没有边,它们一起作为S时,X=X1+X2,Y=Y1+Y2,则Y>=X;但是如果两个点有边相连,X=X1+X2-(S1到S2的D)-(S2到S1的D),Y=Y1+Y2-(S1到S2的D+B)-(S2到S1的D+B),那么Y+B12+B21>=X,就有可能是Y<X了。当输入

1
4 5
1 4 10 2
4 1 6 2
2 1 1 1
4 3 6 2
3 2 4 2

时,输出的是happy。可是实际上,选择1、4节点,Y=2,X=8,显然是unhappy。

附上非正解代码:(AC了只能说明题目数据太水了)

#include <cstdio>
#include <cstring>
#define N 205
#define sf(x) scanf("%d",&x)
int x[N],y[N];
int main(){
int t;
sf(t);
for(int cas=;cas<=t;cas++){
memset(x,,sizeof x);
memset(y,,sizeof y);
printf("Case #%d: ",cas);
int n,m;
sf(n);
sf(m);
for(int i=;i<=m;i++){
int u,v,d,b;
sf(u);sf(v);sf(d);sf(b);
x[u]+=d;
y[v]+=d+b;
}
int ok=;
for(int i=;i<=n;i++)
if(x[i]>y[i])ok=;
if(ok)puts("happy");
else puts("unhappy");
}
}

正解是无源无汇带上下界判断是否有可行流。

将问题转化为网络流问题:
每条边下界为D,上界为D+B,如果存在可行流,那么
$$\sum_{\substack{u\in S \\ v\in \overline {S}}} f_{uv} = \sum_{\substack{u\in S \\ v\in \overline {S}}}f_{uv}\\D_{uv} \leq f_{uv} \leq D_{uv}+B_{uv}$$
所以有
$$\sum_{\substack{u\in S \\ v\in \overline {S}}} D_{uv} \leq \sum_{\substack{u\in S \\ v\in \overline {S}}}D_{uv}+ B_{uv}$$
因此只要求无源无汇上下界网络流是否存在可行流,如果不存在就是unhappy。
而无源汇有上下界的网络流,是否有可行流可以这样求:
人为加上源点s,汇点t,
边权改为上界-下界(这样转化为下界为0),
流入i点的下界和为in,流出的下界和为out,
in>out则s 到 i 连边,流量为in-out;
in<out则 i 到 t 连边,流量为out-in。

求s到t的最大流,如果源点汇点连接的边全部满流则有可行解。

参考国家集训队论文《一种简易的方法求解流量有上下界的网络中网络流问题》

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define N 500
#define M 200001
#define inf 0x3f3f3f3f
struct edge{
int to,next,cap,flow;
}e[M];
int head[N],cnt;
int gap[N],dep[N],cur[N];
void init(){
cnt=;
memset(head, -, sizeof head);
}
void add(int u,int v,int w,int rw=){
e[cnt]=(edge){v,head[u],w,};
head[u]=cnt++;
e[cnt]=(edge){u,head[v],rw,};
head[v]=cnt++;
}
int q[N];
void bfs(int st,int ed){
memset(dep,-,sizeof dep);
memset(gap,,sizeof gap);
gap[]=;
int front=,rear=;
dep[ed]=;
q[rear++]=ed;
while(front!=rear){
int u=q[front++];
for(int i=head[u];~i;i=e[i].next){
int v=e[i].to;
if(dep[v]!=-)continue;
q[rear++]=v;
dep[v]=dep[u]+;
gap[dep[v]]++;
}
}
}
int s[N];
int sap(int st,int ed,int n){
bfs(st,ed);
memcpy(cur,head,sizeof head);
int top=;
int u=st;
int ans=;
while(dep[st]<n){
if(u==ed){
int Min=inf;
int inser;
for(int i=;i<top;i++)
if(Min>e[s[i]].cap-e[s[i]].flow){
Min=e[s[i]].cap-e[s[i]].flow;
inser=i;
}
for(int i=;i<top;i++){
e[s[i]].flow+=Min;
e[s[i]^].flow-=Min;
}
ans+=Min;
top=inser;
u=e[s[top]^].to;
continue;
}
bool flag=false;
int v;
for(int i=cur[u];~i;i=e[i].next){
v=e[i].to;
if(e[i].cap-e[i].flow&&dep[v]+==dep[u]){
flag=true;
cur[u]=i;
break;
}
}
if(flag){
s[top++]=cur[u];
u=v;
continue;
}
int Min=n;
for(int i=head[u];~i;i=e[i].next)
if(e[i].cap-e[i].flow &&dep[e[i].to]<Min){
Min=dep[e[i].to];
cur[u]=i;
}
gap[dep[u]]--;
if(!gap[dep[u]])return ans;
gap[dep[u]=Min+]++;
if(u!=st)u=e[s[--top]^].to;
}
return ans;
}
int main(){
int t;
scanf("%d",&t);
for(int cas=;cas<=t;cas++){
printf("Case #%d: ",cas);
int n,m;
scanf("%d%d",&n,&m);
int in[N];
int st=,ed=n+;
memset(in,,sizeof in);
init();
for(int i=;i<=m;i++){
int u,v,d,b;
scanf("%d%d%d%d",&u,&v,&d,&b);
add(u,v,b);
in[v]+=d;
in[u]-=d;
}
int need=;
for(int i=;i<=n;i++){
if(in[i]>){
add(st,i,in[i]);
need+=in[i];
}
else add(i,ed,-in[i]);
}
int ans=sap(st, ed, ed+);
if(need==ans)puts("happy");
else puts("unhappy");
}
}

【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)的更多相关文章

  1. hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )

    题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...

  2. HDU 4940 Destroy Transportation system(无源汇上下界网络流)

    Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...

  3. SGU 194 Reactor Cooling 无源汇带上下界可行流

    Reactor Cooling time limit per test: 0.5 sec. memory limit per test: 65536 KB input: standard output ...

  4. POJ 2396 有源有汇有上下界可行流问题

    题意:给一个矩阵,给出每行每列之和,附加一些条件,如第i行第j列数必需大于(小于)多少. 思路题解:矩阵模型,模拟网络流,行.列标号为结点,构图,附加s,t,s连行标(容量上下限每行之和(必需以这个 ...

  5. HDU 4940 Destroy Transportation system(2014 Multi-University Training Contest 7)

    思路:无源汇有上下界可行流判定, 原来每条边转化成  下界为D  上界为 D+B   ,判断是否存在可行流即可. 为什么呢?  如果存在可行流  那么说明对于任意的 S 集合流出的肯定等于 流入的, ...

  6. [ACdream 1211 Reactor Cooling]无源无汇有上下界的可行流

    题意:无源无汇有上下界的可行流 模型 思路:首先将所有边的容量设为上界减去下界,然后对一个点i,设i的所有入边的下界和为to[i],所有出边的下界和为from[i],令它们的差为dif[i]=to[i ...

  7. LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)

    #115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...

  8. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  9. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

随机推荐

  1. vijos1907[noip2014]飞扬的小鸟(完全背包)

    描述 Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告 ...

  2. Vs 2015 调试ASP.NET Core修改监听端口

    如何改变监听IP地址和端口?在这里找到了答案:https://github.com/aspnet/KestrelHttpSer... 把Program.cs加一行UseUrls代码如下: using ...

  3. django复习笔记3:实战

    1.初始化 2.配置后台,增加测试数据 3.测试urls/views/templates 4.增加静态资源 5.修改样式 6.模版继承 7.增加博文主页 8.增加表单 9.完善新增页面和编辑页面的表单 ...

  4. 临时表之IF-ELSE

    1.解决输出单列到临时表 场景:存储过程传入id,id为缺省的过滤条件,如果id为0,则查找出tt表中的所有id作为过滤条件 目的:id不为0时,过滤id 解决:用case when来代替if els ...

  5. 李学斌:论复杂系统中的应用间协作V3

    说明 本文主要讨论了巨型复杂业务系统的一种构建思路,力图实现决策意志的快速.准确.一致的下传并简化实施成本提供实施效率.通过全业务领域的即时流程编排,实现全网业务IT系统的快速建设与迭代.本文所讲的方 ...

  6. C10K 问题引发的技术变革

    C10K 问题引发的技术变革 http://rango.swoole.com/archives/381

  7. svn: Checksum mismatch for 'C:\Documents and Settings\Admin\workspace\pics5\src\baolintest\.svn\text-base\test1.java.svn-base'; expected: '034cc715af5

    出现这个问题解决如下: 比如问题文件为\workspace\pics5\src\baolintest\test.java文件,则 1.把在工程根\workspace\pics5\src\baolint ...

  8. 纯手工打造漂亮的瀑布流,五大插件一个都不少Bootstrap+jQuery+Masonry+imagesLoaded+Lightbox!

    前两天写的文章<纯手工打造漂亮的垂直时间轴,使用最简单的HTML+CSS+JQUERY完成100个版本更新记录的华丽转身!>受到很多网友的喜爱,今天特别推出姊妹篇<纯手工打造漂亮的瀑 ...

  9. CSS高级知识

    1.CSS变换 2.CSS动画 3.CSS高级特性及兼容性:http://caniuse.com/

  10. 网页设计:Meta标签详解

    很多人忽视了HTML标签META的强大功效,一个好的META标签设计可以大大提高你的个人网站被搜索到的可能性,有兴趣吗,谁我来重新认识一下META标签吧! META标签是HTML语言HEAD区的一个辅 ...