Preface

BM算法是用来求一个数列的最短线性递推式的。

形式化的,BM算法能够对于长度为n的有穷数列或者已知其满足线性递推的无穷数列\(a\),找到最短的长度为m的有穷数列\(c\),满足对于所有的\(i\geq n\),有$$a_i=\sum\limits_{j=1}^{m}c_ja_{i-j}$$

Text

BM算法的流程十分简洁明了——增量,构造,修正。

方便起见,我们令a的下标从0开始,c的下标从1开始

假设我们当前构造出来的递推系数C是第\(cnt\)版(经过cnt次修正)长度为\(m\),能够满足前\(a_0...a_{i-1}\)项,记做\(_{cnt}C\),初始时\(_{cnt}C\)为空,m=0

记\(d_i=a_i-\sum\limits_{j=1}^{m}c_ja_{i-j}\)

若\(d_i=0\),那么C符合的很好,不用管它

否则,我们需要进行一定的修正,\(_{cnt}C\)需要变换到\(_{cnt+1}C\)。

记\(fail_{cnt}\)表示\(_{cnt}C\)在\(a_i\)处拟合失败。

若\(cnt=0\),说明这是a的第一个非0元素,直接设\(m=i+1\),在\(C\)中填上i+1个0。显然这满足定义式(因为前m项是可以不满足递推式的)。

否则我们考虑如何构造,如果能找到一个\(C'\),满足对于\(m\leq j\leq i-1\),都有\(\sum\limits_{k=1}^{m}c'_ka_{j-k}=0\),且\(\sum\limits_{k=1}^{m}c'_ka_{i-k}=1\)

那么可以构造\(_{cnt+1}C=_{cnt}C+d_iC'\),显然这一定满足性质。其中加法为按项数对应加。

如何构造呢?我们可以利用之前的C!

找到某一个\(k\in[0..cnt-1]\)

我们构造设\(w={d_i\over d_{fail_k}}\),构造\(wC'=\{0,0,0,0,...,0,w,-w*{_{k}C}\}\)

其中前面填上了\(i-fail_k-1\)个0,后面相当于是\(_kC\)乘上\(-w\)接在了后面。

为什么这是对的?其实很简单,对于\(a_i\),带进去的算出来的东西相当于是$$wa_{fail_k}-w(a_{fail_k}-d_{fail_k})=wd_{fail_k}=d_i$$

而对于\(m\leq j\leq i-1\),算出来的是正好是\(w*a_{j-(i-fail_k)}-w*a_{j-(i-fail_k)}=0\),利用了\(_kC\)在1到\(fail_k-1\)都满足关系式,而在\(fail_k\)相差\(d\)的性质。

此时我们还希望总的长度最短,也就是说\(max(m_{cnt},i-fail_k+m_{k})\)最短。

我们只需要动态维护最短的\(i-fail_k+m_{k}\)即可,每次算出\(_{cnt+1}\)时都与之前的k比较一下谁更短即可,这样贪心可以感受出来是正确的。

最坏时间复杂度显然是\(O(nm)\)的

Code

LL rc[4*N],rp[4*N],le,le1,rw[4*N];
void BM()
{
le=le1=0;
memset(rc,0,sizeof(rc));
memset(rp,0,sizeof(rp));
int lf=0;LL lv=0;
fo(i,0,n1)
{
LL v=0;
fo(j,1,le) inc(v,rc[j]*ap[i-j]%mo);
if(v==ap[i]) continue;
if(le==0)
{
le=i+1;
fo(j,1,le) rc[j]=rp[j]=0;
le1=0,lf=i,lv=(ap[i]-v)%mo;
continue;
}
v=(ap[i]-v+mo)%mo;
LL mul=v*ksm(lv,mo-2)%mo; fo(j,1,le) rw[j]=rc[j]; inc(rc[i-lf],mul);
fo(j,i-lf+1,i-lf+le1) inc(rc[j],(mo-mul*rp[j-(i-lf)]%mo)%mo);
if(le<i-lf+le1)
{
swap(le1,le);
le=i-lf+le,lf=i,lv=v;
fo(j,1,le1) rp[j]=rw[j];
} v=0;
fo(j,1,le) inc(v,rc[j]*ap[i-j]%mo);
}
}

【学习小记】Berlekamp-Massey算法的更多相关文章

  1. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  2. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  3. mongodb入门学习小记

    Mongodb 简单入门(个人学习小记) 1.安装并注册成服务:(示例) E:\DevTools\mongodb3.2.6\bin>mongod.exe --bind_ip 127.0.0.1 ...

  4. 从决策树学习谈到贝叶斯分类算法、EM、HMM --别人的,拷来看看

    从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全 ...

  5. javascript学习小记(一)

    大四了,课少了许多,突然之间就不知道学什么啦.整天在宿舍混着日子,很想学习就是感觉没有一点头绪,昨天看了电影激战.这种纠结的情绪让我都有点喘不上气啦!一点要找点事情干了,所以决定找个东西开始学习.那就 ...

  6. 深度学习word2vec笔记之算法篇

    深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料 ...

  7. 从决策树学习谈到贝叶斯分类算法、EM、HMM

    从决策树学习谈到贝叶斯分类算法.EM.HMM                (Machine Learning & Recommend Search交流新群:172114338) 引言 log ...

  8. js 正则学习小记之匹配字符串

    原文:js 正则学习小记之匹配字符串 今天看了第5章几个例子,有点收获,记录下来当作回顾也当作分享. 关于匹配字符串问题,有很多种类型,今天讨论 js 代码里的字符串匹配.(因为我想学完之后写个语法高 ...

  9. js 正则学习小记之左最长规则

    原文:js 正则学习小记之左最长规则 昨天我在判断正则引擎用到的方法是用 /nfa|nfa not/ 去匹配 "nfa not",得到的结果是 'nfa'.其实我们的本意是想得到整 ...

随机推荐

  1. magento下载地址

    https://download.magentochina.org/magento/2/ https://www.magentochina.org/blog/download-install-mage ...

  2. etcd常用命令-增删改查

    增删改查key-values 插入数据测试 # etcdctl put name1 james# etcdctl put name11 alice# etcdctl put name12 seli # ...

  3. spring boot-3.原理探究

    新建的项目结构如下图: 1.POM 文件 项目会默认依赖 spring-boot-starter-parent 项目 <parent> <groupId>org.springf ...

  4. SPOJ 703 SERVICE - Mobile Service 题解

    题面 好题啊!~ 设f[i][j][k][l]表示已经处理完前i个请求后,a在j,b在k,c在l的最小值是多少: 那么f[i][p[i]][k][l]=min(f[i][p[i]][k][l],f[i ...

  5. CodeForces-520E Pluses everywhere

    题目描述 给出一个长度为 \(n\) 的字符串,给出一个非负整数 \(k\),要求给这个字符串中间添加 \(k\) 个$\(+\)'号,变成一个表 达式,比如"\(1000101\)&quo ...

  6. Luogu P1650 田忌赛马

    题目 如果我们最大比对面最大大,那么直接用. 如果我们最小比对面最小大,那么直接用. 否则用我们最小去换对面最大. #include<bits/stdc++.h> using namesp ...

  7. hibernate-HQL连接查询 转载sincoolvip

    和SQL查询一样,HQL也支持各种各样的连接查询,如内连接.外连接 连接类型 HQL语法内连接 inner join 或者join迫切内连接 inner join fetch 或join fetch左 ...

  8. 使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现

    1. 拉普拉斯算子 1.1 简介 一种典型的各向同性的微分算子,可用于检测图像中灰度图片的区域 $$ \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2} ...

  9. C++新型强制类型转换。

    C++强制类型转换分为4个不同的类型. 1.static_cast -用作基本类型转换. -不能用于基本类型指针转换. -可以用于有继承关系对象之间的转换和类指针之间的转换. #include < ...

  10. MySQL 7种 JOIN连表方法

    规定:左边的圆代表表 a,右边的代表 b. JOIN 关键字可以在两表之间选中任意部分.] 通过以下代码制造一些数据: delimiter // drop procedure if exists pr ...