Preface

BM算法是用来求一个数列的最短线性递推式的。

形式化的,BM算法能够对于长度为n的有穷数列或者已知其满足线性递推的无穷数列\(a\),找到最短的长度为m的有穷数列\(c\),满足对于所有的\(i\geq n\),有$$a_i=\sum\limits_{j=1}^{m}c_ja_{i-j}$$

Text

BM算法的流程十分简洁明了——增量,构造,修正。

方便起见,我们令a的下标从0开始,c的下标从1开始

假设我们当前构造出来的递推系数C是第\(cnt\)版(经过cnt次修正)长度为\(m\),能够满足前\(a_0...a_{i-1}\)项,记做\(_{cnt}C\),初始时\(_{cnt}C\)为空,m=0

记\(d_i=a_i-\sum\limits_{j=1}^{m}c_ja_{i-j}\)

若\(d_i=0\),那么C符合的很好,不用管它

否则,我们需要进行一定的修正,\(_{cnt}C\)需要变换到\(_{cnt+1}C\)。

记\(fail_{cnt}\)表示\(_{cnt}C\)在\(a_i\)处拟合失败。

若\(cnt=0\),说明这是a的第一个非0元素,直接设\(m=i+1\),在\(C\)中填上i+1个0。显然这满足定义式(因为前m项是可以不满足递推式的)。

否则我们考虑如何构造,如果能找到一个\(C'\),满足对于\(m\leq j\leq i-1\),都有\(\sum\limits_{k=1}^{m}c'_ka_{j-k}=0\),且\(\sum\limits_{k=1}^{m}c'_ka_{i-k}=1\)

那么可以构造\(_{cnt+1}C=_{cnt}C+d_iC'\),显然这一定满足性质。其中加法为按项数对应加。

如何构造呢?我们可以利用之前的C!

找到某一个\(k\in[0..cnt-1]\)

我们构造设\(w={d_i\over d_{fail_k}}\),构造\(wC'=\{0,0,0,0,...,0,w,-w*{_{k}C}\}\)

其中前面填上了\(i-fail_k-1\)个0,后面相当于是\(_kC\)乘上\(-w\)接在了后面。

为什么这是对的?其实很简单,对于\(a_i\),带进去的算出来的东西相当于是$$wa_{fail_k}-w(a_{fail_k}-d_{fail_k})=wd_{fail_k}=d_i$$

而对于\(m\leq j\leq i-1\),算出来的是正好是\(w*a_{j-(i-fail_k)}-w*a_{j-(i-fail_k)}=0\),利用了\(_kC\)在1到\(fail_k-1\)都满足关系式,而在\(fail_k\)相差\(d\)的性质。

此时我们还希望总的长度最短,也就是说\(max(m_{cnt},i-fail_k+m_{k})\)最短。

我们只需要动态维护最短的\(i-fail_k+m_{k}\)即可,每次算出\(_{cnt+1}\)时都与之前的k比较一下谁更短即可,这样贪心可以感受出来是正确的。

最坏时间复杂度显然是\(O(nm)\)的

Code

LL rc[4*N],rp[4*N],le,le1,rw[4*N];
void BM()
{
le=le1=0;
memset(rc,0,sizeof(rc));
memset(rp,0,sizeof(rp));
int lf=0;LL lv=0;
fo(i,0,n1)
{
LL v=0;
fo(j,1,le) inc(v,rc[j]*ap[i-j]%mo);
if(v==ap[i]) continue;
if(le==0)
{
le=i+1;
fo(j,1,le) rc[j]=rp[j]=0;
le1=0,lf=i,lv=(ap[i]-v)%mo;
continue;
}
v=(ap[i]-v+mo)%mo;
LL mul=v*ksm(lv,mo-2)%mo; fo(j,1,le) rw[j]=rc[j]; inc(rc[i-lf],mul);
fo(j,i-lf+1,i-lf+le1) inc(rc[j],(mo-mul*rp[j-(i-lf)]%mo)%mo);
if(le<i-lf+le1)
{
swap(le1,le);
le=i-lf+le,lf=i,lv=v;
fo(j,1,le1) rp[j]=rw[j];
} v=0;
fo(j,1,le) inc(v,rc[j]*ap[i-j]%mo);
}
}

【学习小记】Berlekamp-Massey算法的更多相关文章

  1. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  2. Gcd&Exgcd算法学习小记

    Preface 对于许多数论问题,都需要涉及到Gcd,求解Gcd,常常使用欧几里得算法,以前也只是背下来,没有真正了解并证明过. 对于许多求解问题,可以列出贝祖方程:ax+by=Gcd(a,b),用E ...

  3. mongodb入门学习小记

    Mongodb 简单入门(个人学习小记) 1.安装并注册成服务:(示例) E:\DevTools\mongodb3.2.6\bin>mongod.exe --bind_ip 127.0.0.1 ...

  4. 从决策树学习谈到贝叶斯分类算法、EM、HMM --别人的,拷来看看

    从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全 ...

  5. javascript学习小记(一)

    大四了,课少了许多,突然之间就不知道学什么啦.整天在宿舍混着日子,很想学习就是感觉没有一点头绪,昨天看了电影激战.这种纠结的情绪让我都有点喘不上气啦!一点要找点事情干了,所以决定找个东西开始学习.那就 ...

  6. 深度学习word2vec笔记之算法篇

    深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料 ...

  7. 从决策树学习谈到贝叶斯分类算法、EM、HMM

    从决策树学习谈到贝叶斯分类算法.EM.HMM                (Machine Learning & Recommend Search交流新群:172114338) 引言 log ...

  8. js 正则学习小记之匹配字符串

    原文:js 正则学习小记之匹配字符串 今天看了第5章几个例子,有点收获,记录下来当作回顾也当作分享. 关于匹配字符串问题,有很多种类型,今天讨论 js 代码里的字符串匹配.(因为我想学完之后写个语法高 ...

  9. js 正则学习小记之左最长规则

    原文:js 正则学习小记之左最长规则 昨天我在判断正则引擎用到的方法是用 /nfa|nfa not/ 去匹配 "nfa not",得到的结果是 'nfa'.其实我们的本意是想得到整 ...

随机推荐

  1. C语言博客作业05

    这个作业属于哪个课程 C语言程序设计II 这个作业要求在那里 https://edu.cnblogs.com/campus/zswxy/CST2019-3/homework/9827 我在这个课程的目 ...

  2. poj3191(负进位制)

    题目链接:https://vjudge.net/problem/POJ-3191 题意:将一个int范围的整数用-2进制表示并输出. 思路:将十进制转换成-2进制,原理也类似于短除法.但不同的是不是简 ...

  3. Spring MVC 中使用AOP 进行事务管理--注解实现

    注解实现实现事务管理很简单,和配置式差不多,配置文件的头文件也要加相应的支持.配置数据源,并开启事务管理支持即可. <bean id="transactionManager" ...

  4. Python程序结构(sys、os)

    一.Python组成结构 Python程序一般由包package.模块moudle.函数function组成.具体关系如下图:

  5. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  6. 史上最简单JS复制功能,兼容安卓ios!

    1.JS复制原理: 被复制内容的元素不能被其他元素遮盖,否则无效.  (设置opacity透明为0,不可以设置display:none); 2.常规的复制方法 function copyUrl2() ...

  7. H5头部meta标签的作用

    <!DOCTYPE html>  H5标准声明,使用 HTML5 doctype,不区分大小写 <head lang=”en”> 标准的 lang 属性写法 <meta ...

  8. vue elementui table组件内容换行

    解决方案 tableData = [ { "name": "domain111", "metric": [ "平均耗时" ...

  9. 【总结】Android 应用测试总结

    前提 所有的功能分支已完成 启动: 1. 启动入口:桌面正常启动,最近运行启动,所有程序列表中启动,锁屏快捷启动2. 其他入口:从其他程序开启应用,从外部以文件形式打开应用(如果有)3. 退回:从其他 ...

  10. git和svn 及git使用&解决上线冲突

    一.svn git的工作流程 git 的工作流程图 二.git的基础使用 git 的安装 1.下载对应版本:https://git-scm.com/download 2.安装git:在选取安装路径的下 ...