Pandas | Dataframe的merge操作,像数据库一样尽情join
今天是pandas数据处理第8篇文章,我们一起来聊聊dataframe的合并。
常见的数据合并操作主要有两种,第一种是我们新生成了新的特征,想要把它和旧的特征合并在一起。第二种是我们新获取了一份数据集,想要扩充旧的数据集。这两种合并操作在我们日常的工作当中非常寻常,那么究竟应该怎么操作呢?让我们一个一个来看。
merge
首先我们来看dataframe当中的merge操作,merge操作类似于数据库当中两张表的join,可以通过一个或者多个key将多个dataframe链接起来。
我们首先来创建两个dataframe数据:
df1 = pd.DataFrame({'id': [1, 2, 3, 3, 5, 7, 6], 'age': range(7)})
df2 = pd.DataFrame({'id': [1, 2, 4, 4, 5, 6, 7], 'score': range(7)})

我们可以看到这两个dataframe当中都有id这个字段,如果我们想要将它们根据id关联起来,我们可以用pd.merge函数完成:

这里虽然我们没有指定根据哪一列完成关联,但是pandas会自动寻找两个dataframe的名称相同列来进行关联。一般情况下我们不这么干,还是推荐大家指定列名。指定列名很简单,我们只需要传入on这个参数即可。

如果需要根据多列关联,我们也可以传入一个数组。但假如两个dataframe当中的列名不一致怎么办,比如这两个dataframe当中的一列叫做id,一列叫做number,该怎么完成join呢?
df1 = pd.DataFrame({'id': [1, 2, 3, 3, 5, 7, 6], 'age': range(7)})
df2 = pd.DataFrame({'number': [1, 2, 4, 4, 5, 6, 7], 'score': range(7)})
这个时候就需要用left_on指定左表用来join的列名,用right_on指定右表用来join的列名。

谈到join,不得不提另外一个问题就是join的方式。我们都知道在数据库的表join操作当中我们通常的join方式有4种。分别是innner join,left join,right join和outer join。我们观察一下上面的结果会发现关联之后的数据条数变少了,这是因为默认的方式是inner join,也就是两张表当中都存在的数据才会被保留。如果是left join,那边左边当中所有的数据都会保留,关联不上的列置为None,同理,如果是right join,则右表全部保留,outer join则会全部保留。
join的方式选择通过how这个参数控制,比如如果我们想要左表保留,我们传入how='left'即可。

除此之外,merge操作还有一些其他的参数,由于篇幅限制我们不一一介绍了,大家感兴趣可以去查阅相关文档。
数据合并
另外一个常用的操作叫做数据合并,为了和merge操作区分,我用了中文。虽然同样是合并,但是它的逻辑和merge是不同的。对于merge来说,我们需要关联的key,是通过数据关联上之后再合并的。而合并操作是直接的合并,行对行合并或者是列对列合并,是忽视数据的合并。
这个合并操作我们之前在numpy的介绍当中曾经也提到过,我们这里简单回顾一下。
首先我们先创建一个numpy的数组:
import numpy as np
arr = np.random.rand(3, 4)
之后呢,我们可以用concatenate函数把这个数组横着拼或者是竖着拼,默认是竖着拼:

我们也可以通过axis这个参数让它变成横着拼:

对于dataframe同样也有这样的操作,不过换了一个名字叫做concat。如果我们不指定的话会竖着拼接:

竖着拼接的时候会按照列进行对齐,如果列名对不上就会填充NaN。
通过axis参数我们可以让它横向拼接:

以上就是concat的基本用法了,除了基本用法之外,concat还有一些其他的应用,比如说处理index层次索引等等。只是这些用法相对来说比较小众,使用频率不高,就不赘述了。
今天的文章到这里就结束了,如果喜欢本文的话,请来一波素质三连,给我一点支持吧(关注、转发、点赞)。
- END -
Pandas | Dataframe的merge操作,像数据库一样尽情join的更多相关文章
- pandas DataFrame 数据处理常用操作
Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/ ...
- Pandas dataframe数据写入文件和数据库
转自:http://www.dcharm.com/?p=584 Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFr ...
- pandas之DataFrame合并merge
一.merge merge操作实现两个DataFrame之间的合并,类似于sql两个表之间的关联查询.merge的使用方法及参数解释如下: pd.merge(left, right, on=None, ...
- Python pandas DataFrame操作
1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a ...
- Python时间处理,datetime中的strftime/strptime+pandas.DataFrame.pivot_table(像groupby之类 的操作)
python中datetime模块非常好用,提供了日期格式和字符串格式相互转化的函数strftime/strptime 1.由日期格式转化为字符串格式的函数为: datetime.datetime.s ...
- pandas.DataFrame的pivot()和unstack()实现行转列
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings impor ...
- pandas.DataFrame——pd数据框的简单认识、存csv文件
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, detai ...
- pandas模块的数据操作
数据操作 数据操作最重要的一步也是第一步就是收集数据,而收集数据的方式有很多种,第一种就是我们已经将数据下载到了本地,在本地通过文件进行访问,第二种就是需要到网站的API处获取数据或者网页上爬取数据, ...
- python-数据描述与分析2(利用Pandas处理数据 缺失值的处理 数据库的使用)
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它 ...
随机推荐
- spring-Sessions are not supported by the MongoDB cluster to which this client is connected
原因: 1.mongodb版本过低4.0以下不支持事务的情况下会报这个 2.安全认证问题参考如下连接 https://blog.csdn.net/ssehs/article/details/10530 ...
- 使用DEBUG 读取主引导记录
实验环境:win7 64位(虚拟机) 由于此版本不能直接在命令行使用DOS,需要下载相关软件,参考https://www.cnblogs.com/caishunzhe/p/12823201.html ...
- JS DOM操作案例
显示隐藏表单文本内容 <input type="text" value="手机"> var text = document.querySelecto ...
- 【Canal】数据同步的终极解决方案,阿里巴巴开源的Canal框架当之无愧!!
写在前面 在当今互联网行业,尤其是现在分布式.微服务开发环境下,为了提高搜索效率,以及搜索的精准度,会大量使用Redis.Memcached等NoSQL数据库,也会使用大量的Solr.Elastics ...
- [leetcode/lintcode 题解] Google面试题:合法组合
给一个单词s,和一个字符串集合str.这个单词每次去掉一个字母,直到剩下最后一个字母.求验证是否存在一种删除的顺序,这个顺序下所有的单词都在str中.例如单词是’abc’,字符串集合是{‘a’,’ab ...
- C# 使用代理实现线程间调用
实现功能: 后台线程改变窗体控件(flowLayoutPanel1)的状态. 利用 this.flowLayoutPanel1.InvokeRequired == false,可以知道是主线程调用的自 ...
- java 模拟斗地主发牌洗牌
一 模拟斗地主洗牌发牌 1.案例需求 按照斗地主的规则,完成洗牌发牌的动作. 具体规则: 1. 组装54张扑克牌 2. 将54张牌顺序打乱 3. 三个玩家参与游戏,三人交替摸牌,每人17张牌,最后三张 ...
- JavaScript 使用yrm修改镜像源
安装yrm npm install -g yrm 列出当前可用的镜像源 # yrm ls npm ----- https://registry.npmjs.org/ cnpm ---- http:// ...
- python使用zipfile递归压缩和解压缩文件
import shutil,zipfile,os class ToolModel(object): def dfs_get_zip_file(self,input_path, result, igno ...
- Golang并发编程基础
硬件 内存 作为并发编程一个基础硬件知识储备,首先要说的就是内存了,总的来说在绝大多数情况下把内存的并发增删改查模型搞清楚了其他的基本上也是异曲同工之妙. 内存芯片--即我们所知道的内存颗粒,是一堆M ...