Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie finds herself at the top left corner of an R (1 <= R <= 100) by C (1 <= C <= 100) grid of elevations E (-25 <= E <= 25). In order to join FJ and the other cows at a discow party, she must get down to the bottom right corner as quickly as she can by travelling only north, south, east, and west.

Bessie starts out travelling at a initial speed V (1 <= V <= 1,000,000). She has discovered a remarkable relationship between her speed and her elevation change. When Bessie moves from a location of height A to an adjacent location of eight B, her speed is multiplied by the number 2^(A-B). The time it takes Bessie to travel from a location to an adjacent location is the reciprocal of her speed when she is at the first location.

Find the both smallest amount of time it will take Bessie to join her cow friends.

Input

* Line 1: Three space-separated integers: V, R, and C, which respectively represent Bessie's initial velocity and the number of rows and columns in the grid.

* Lines 2..R+1: C integers representing the elevation E of the corresponding location on the grid.

Output

A single number value, printed to two exactly decimal places: the minimum amount of time that Bessie can take to reach the bottom right corner of the grid.

Sample Input

1 3 3
1 5 3
6 3 5
2 4 3

Sample Output

29.00

Hint

Bessie's best route is: 
Start at 1,1 time 0 speed 1 
East to 1,2 time 1 speed 1/16 
South to 2,2 time 17 speed 1/4 
South to 3,2 time 21 speed 1/8 
East to 3,3 time 29 speed 1/4
 
这个题用vector的话会T
下面是vector是T的代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath>
#define Inf 0x3f3f3f3f const int maxn=1e5+;
typedef long long ll;
using namespace std;
ll ksm(ll x,ll y)
{
ll ans=;
while(y)
{
if(y&)
{
ans=ans*x;
}
x*=x;
y>>=;
}
return ans;
}
struct node
{
int to;
double w;
bool friend operator < (node x,node y)
{
return x.w>y.w;
}
};
int Map[]; vector<node>vec[];
double dis[];
int vis[];
int V,R,C;
int dir[][]={{,},{,-},{-,},{,}};
bool check(int x,int y)
{
if(x>=&&x<=R&&y>=&&y<=C)
{
return true;
}
else
{
return false;
}
}
void init()
{
for(int t=;t<=R*C;t++)
{
dis[t]=;
}
} void Dijkstra(int s)
{
node st;
st.to=s;
st.w=;
priority_queue<node>q;
q.push(st);
dis[s]=;
while(!q.empty())
{
node now=q.top();
q.pop();
if(vis[now.to])continue;
vis[now.to]=; int len=vec[now.to].size();
for(int t=;t<len;t++)
{
node tto=vec[now.to][t]; if(vis[tto.to]==&&tto.w+dis[now.to]<dis[tto.to])
{
tto.w=tto.w+dis[now.to];
dis[tto.to]=tto.w;
q.push(tto);
}
}
}
} int main()
{
// std::ios::sync_with_stdio(false);
scanf("%d%d%d",&V,&R,&C);
init();
for(int t=;t<=R;t++)
{
for(int j=;j<=C;j++)
{
scanf("%d",&Map[(t-)*C+j]);
}
}
for(int t=;t<=R;t++)
{
for(int j=;j<=C;j++)
{
for(int k=;k<;k++)
{
int xx=t+dir[k][];
int yy=j+dir[k][];
if(check(xx,yy))
{
node s;
s.to=(xx-)*C+yy;
s.w=1.0/V*ksm(,Map[(t-)*C+j]-Map[]);
vec[(t-)*C+j].push_back(s);
}
}
}
}
Dijkstra();
printf("%.2f\n",dis[R*C]); return ;
} AC的是邻接表的
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath> const int maxn=1e4+;
typedef long long ll;
using namespace std; struct edge
{
int u,v;
double w;
int next;
}edge[maxn*]; struct node
{
int pos;
double w;
node(int x,double y)
{
pos=x;
w=y;
}
bool friend operator <(node x,node y)
{
return x.w>y.w;
}
};
int n,m,s,x,y,z,tot = ,V;
bool check(int x,int y)
{
if(x>=&&x<=n&&y>=&&y<=m)
{
return true;
}
else
{
return false;
}
}
int head[];
double d[];
int vis[];
int a[];
int dist[][] = {{-,},{,-},{,},{,}}; void add(int u,int v,double w)
{
edge[++tot].u=u;
edge[tot].v=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot;
return ;
} void Dijkstra(int s)
{
priority_queue<node>q;
d[s]=;
q.push(node(s,));
while(!q.empty())
{
node now=q.top();
q.pop();
//cout<<now.pos<<endl;
if(vis[now.pos])continue;
vis[now.pos]=; for(int i=head[now.pos];i!=-;i=edge[i].next)
{
int ne=edge[i].v;
double ww=edge[i].w;
if(d[now.pos]+ww<d[ne])
{
d[ne]=d[now.pos]+ww;
q.push(node(ne,d[ne]));
}
}
}
return ;
}
int main()
{
scanf("%d%d%d",&V,&n,&m);
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis)); for(int t=;t<=n*m;t++)
{
d[t]=;
}
for(int i = ;i <= n; ++i)
for(int j = ;j <= m; ++j)
scanf("%d",&a[(i-)*m+j]);
for(int i = ;i <= n; ++i)
for(int j = ;j <= m; ++j)
for(int k = ;k < ; ++k)
{
int x = i + dist[k][];
int y = j + dist[k][];
if(check(x,y))
{
double v = 1.0 / V * pow(2.0 , a[(i-)*m+j] - a[]);
add((i-)*m+j,(x-)*m+y,v);
}
}
Dijkstra();
printf("%.2f\n",d[n * m]);
return ;
}

POJ - 3037-Skiing(邻接表+Dijkstra)的更多相关文章

  1. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  2. poj 1511(SPFA+邻接表)

    题目链接:http://poj.org/problem?id=1511 思路:题目意思很简单就是要求源点到各点的最短路之和,然后再求各点到源点的最短路之和,其实就是建两个图就ok了,其中一个建反图.1 ...

  3. USACO 2008 January Silver Telephone Lines /// 二分最短路 邻接表dijkstra oj22924

    题目大意: 一共有N (1 ≤ N ≤ 1,000)个电线杆,有P P (1 ≤ P ≤ 10,000)对电线杆是可以连接的, 用几条线连接在一起的电线杆之间都可相互通信,现在想要使得电线杆1和电线杆 ...

  4. POJ - 3255 SPFA+邻接表求次短路径

    题意:给出m条边 , n个顶点,u [ i ]到v [ i ] 的距离w [ i ],求除了最短路的那条最短的边的长度. 思路:之前有做过相似的题,使用迪杰斯特拉算法求单源最短路径,并且记录路径,枚举 ...

  5. POJ 3037 Skiing(Dijkstra)

    Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4668   Accepted: 1242   Special ...

  6. POJ 3037 Skiing(如何使用SPFA求解二维最短路问题)

    题目链接: https://cn.vjudge.net/problem/POJ-3037 Bessie and the rest of Farmer John's cows are taking a ...

  7. POJ - 3037 Skiing SPFA

    Skiing Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day ...

  8. Poj(2679),SPFA,邻接表(主流写法)

    题目链接:http://poj.org/problem?id=3268 题意: 有编号为1-N的牛,它们之间存在一些单向的路径.给定一头牛的编号,其他牛要去拜访它并且拜访完之后要返回自己原来的位置,求 ...

  9. hdu1839之二分+邻接表+Dijkstra+队列优化

    Delay Constrained Maximum Capacity Path Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65 ...

随机推荐

  1. Tarjan 做题总结

    这两天Tarjan复习完后把题做了做.洛谷题单<图的连通性>已经做得差不多了.大部分是Tarjan的题,所以写一篇小总结. T1 [模板] 缩点 不多bb.我已经写过关于Tarjan模板的 ...

  2. 【从零开始撸一个App】Dagger2

    Dagger2是一个IOC框架,一般用于Android平台,第一次接触的朋友,一定会被搞得晕头转向.它延续了Java平台Spring框架代码碎片化,注解满天飞的传统.尝试将各处代码片段串联起来,理清思 ...

  3. Go语言入门系列(四)之map的使用

    本系列前面的文章: Go语言入门系列(一)之Go的安装和使用 Go语言入门系列(二)之基础语法总结 Go语言入门系列(三)之数组和切片 1. 声明 map是一种映射,可以将键(key)映射到值(val ...

  4. 【Redis】Redis开篇与如何安装单机版Redis,这次我会了!!

    写在前面 很早之前,就有不少小伙伴微信留言说:冰河,你能不能写一个Redis专栏啊,我最近在学习Redis,看书看不下去,学习视频又觉得视频太长了,还是看你的文章比较给力!哈哈,原来我写的文章能够让小 ...

  5. Kerberos认证原理及基于Kerberos认证的NFS文件共享

    目录 Kerberos认证原理 简介 client访问server过程 一.Authentication Service Exchange (AS Exchange) 二.Ticket Grantin ...

  6. (转)软件产品化,国内IT人之痛

    原文链接:http://blog.csdn.net/harrymeng/article/details/5254415 记得在网上看过一则印度软件的有趣故事,意思是先从印度6个不同城市的软件公司中选出 ...

  7. Spring Boot系列(二):Spring Boot自动装配原理解析

    一.Spring Boot整合第三方组件(Redis为例) 1.加依赖 <!--redis--> <dependency> <groupId>org.springf ...

  8. leetcode刷题记录——树

    递归 104.二叉树的最大深度 /** * Definition for a binary tree node. * public class TreeNode { * int val; * Tree ...

  9. (转)文件上传org.apache.tomcat.util.http.fileupload.FileUploadException: Stream closed

    文件上传时,tomcat报错org.springframework.web.multipart.MultipartException: Failed to parse multipart servle ...

  10. ceph scrub error解决方案

    参考链接:https://blog.csdn.net/u010317005/article/details/79242794 问题现象: 原因分析: 数据的不一致性(inconsistent)指对象的 ...