Codeforces13C–Sequence (区间DP)
题目大意
给定一个含有N个数的序列,要求你对一些数减掉或者加上某个值,使得序列变为非递减的,问你加减的值的总和最少是多少?
题解
一个很显然的结果就是,变化后的每一个值肯定是等于原来序列的某个值,因为只需要变为非递减的,所以对于某个数要么不变,要么变成左右附件的某个值。这样我们就可以根据前述条件得出DP方程了:dp[i][j]=min(dp[i][j-1],dp[i-1][j]+|a[i]-b[j]|)(a为原序列,b为排序后的序列),方程的意思是,把序列前i个数变为非递减序列并且以不超过b[j]的值结尾的最小花费,那么它要么是以不超过b[j-1]结尾的最小花费,或者是刚好以b[j]结尾的最小花费
代码:
1 #include <algorithm>
2 #include <cstdio>
3 #include <cstring>
4 #include <cmath>
5 #include <cstdlib>
6 using namespace std;
7 #define MAXN 5005
8 #define INF 0x3f3f3f3f
9 typedef long long LL;
10 LL dp[MAXN],a[MAXN],b[MAXN];
11 int main()
12 {
13 int n;
14 scanf("%d",&n);
15 for(int i=1;i<=n;i++) scanf("%I64d",&a[i]),b[i]=a[i];
16 sort(b+1,b+n+1);
17 for(int i=1;i<=n;i++)
18 for(int j=1;j<=n;j++)
19 {
20 if(j==1)dp[j]+=abs(a[i]-b[j]);
21 else
22 dp[j]=min(dp[j-1],dp[j]+abs(a[i]-b[j]));
23 }
24 printf("%I64d\n",dp[n]);
25 return 0;
26 }
原创博客:https://www.cnblogs.com/zjbztianya/archive/2013/09/06/3305003.html
Codeforces13C–Sequence (区间DP)的更多相关文章
- Codeforces13C–Sequence(区间DP)
题目大意 给定一个含有N个数的序列,要求你对一些数减掉或者加上某个值,使得序列变为非递减的,问你加减的值的总和最少是多少? 题解 一个很显然的结果就是,变化后的每一个值肯定是等于原来序列的某个值,因为 ...
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- UVA 1626 Brackets sequence 区间DP
题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...
- Ural 1183 Brackets Sequence(区间DP+记忆化搜索)
题目地址:Ural 1183 最终把这题给A了.. .拖拉了好长时间,.. 自己想还是想不出来,正好紫书上有这题. d[i][j]为输入序列从下标i到下标j最少须要加多少括号才干成为合法序列.0< ...
- poj 1141 Brackets Sequence ( 区间dp+输出方案 )
http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...
- HDU 1141---Brackets Sequence(区间DP)
题目链接 http://poj.org/problem?id=1141 Description Let us define a regular brackets sequence in the fol ...
- 区间DP POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29520 Accepted: 840 ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
随机推荐
- SourceGenerator入门指北
SourceGenerator介绍 SourceGenerator于2020年4月29日在微软的.net blog首次介绍,大概说的是开发者编可以写分析器,在项目代码编译时,分析器分析项目既有的静态代 ...
- 免费稳定图床最佳实践:PicGo+GitHub+jsDeliver 极简教程
一.下载 PicGo PicGo 是啥?顾名思义,它是一个快速上传图片并获取 图片 URL 链接的工具. 目前支持七牛.腾讯云.阿里云和 GitHub 等图床.该工具代码已在 GitHub 开源,读者 ...
- LVS负载均衡之DR模式原理介绍
LVS基本原理 流程解释: 当用户向负载均衡调度器(Director Server)发起请求,调度器将请求发往至内核空间 PREROUTING 链首先会接收到用户请求,判断目标 IP 确定是本机 IP ...
- Spring框架入门浅析
一.Spring Bean的配置 在需要被Spring框架创建对象的实体类的类声明前面加注解:```@component```.这样在Spring扫描的时候,看到该注解就会在容器中创建该实体类的对象. ...
- 更新gitignore后如何使其生效
Files already tracked by Git are not affected; Git - gitignore Documentation https://git-scm.com/doc ...
- file descriptor 0 1 2 一切皆文件 stdout stderr stdin /dev/null 沉默是金 pipes 禁止输出 屏蔽 stdout 和 stderr 输入输出重定向 重定向文件描述符
movie.mpeg.001 movie.mpeg.002 movie.mpeg.003 ... movie.mpeg.099 $cat movie.mpeg.0*>movie.mpeg ...
- Asp.netCore 3.1控制器属性注入and异步事务Aop by AutoFac
Aspect Oriented Programming(AOP)是较为热门的一个话题.AOP,国内我们都习惯称之为:面向切面编程 下面直接code 干货展示:(一般人我还不告诉,嘻嘻) 1:导入相关的 ...
- LOJ10068 秘密的牛奶运输
LOJ10068秘密的牛奶运输 题目描述 Farmer John 要把他的牛奶运输到各个销售点.运输过程中,可以先把牛奶运输到一些销售点,再由这些销售点分别运输到其他销售点. 运输的总距离越小,运输的 ...
- Phoenix踩坑填坑记录
Phoenix踩坑填坑记录 Phoenix建表语句 如何添加二级索引 判断某表是否存在 判断索引是否存在 Date类型日期,条件判断 杂项 记录Phoenix开发过程中的填坑记录. 部分原文地址:ph ...
- 关于项目中Spring版本与jdk1.8兼容问题解决
问题描述: 在用公司的工具搭建项目时,由于使用Spring框架,同时要求jdk版本为1.8:当部署完成以后,项目总是无法运行,会报错: Context namespace element 'annot ...