题目大意

给定一个含有N个数的序列,要求你对一些数减掉或者加上某个值,使得序列变为非递减的,问你加减的值的总和最少是多少?

题解

一个很显然的结果就是,变化后的每一个值肯定是等于原来序列的某个值,因为只需要变为非递减的,所以对于某个数要么不变,要么变成左右附件的某个值。这样我们就可以根据前述条件得出DP方程了:dp[i][j]=min(dp[i][j-1],dp[i-1][j]+|a[i]-b[j]|)(a为原序列,b为排序后的序列),方程的意思是,把序列前i个数变为非递减序列并且以不超过b[j]的值结尾的最小花费,那么它要么是以不超过b[j-1]结尾的最小花费,或者是刚好以b[j]结尾的最小花费

代码:

 1 #include <algorithm>
2 #include <cstdio>
3 #include <cstring>
4 #include <cmath>
5 #include <cstdlib>
6 using namespace std;
7 #define MAXN 5005
8 #define INF 0x3f3f3f3f
9 typedef long long LL;
10 LL dp[MAXN],a[MAXN],b[MAXN];
11 int main()
12 {
13 int n;
14 scanf("%d",&n);
15 for(int i=1;i<=n;i++) scanf("%I64d",&a[i]),b[i]=a[i];
16 sort(b+1,b+n+1);
17 for(int i=1;i<=n;i++)
18 for(int j=1;j<=n;j++)
19 {
20 if(j==1)dp[j]+=abs(a[i]-b[j]);
21 else
22 dp[j]=min(dp[j-1],dp[j]+abs(a[i]-b[j]));
23 }
24 printf("%I64d\n",dp[n]);
25 return 0;
26 }

原创博客:https://www.cnblogs.com/zjbztianya/archive/2013/09/06/3305003.html

Codeforces13C–Sequence (区间DP)的更多相关文章

  1. Codeforces13C–Sequence(区间DP)

    题目大意 给定一个含有N个数的序列,要求你对一些数减掉或者加上某个值,使得序列变为非递减的,问你加减的值的总和最少是多少? 题解 一个很显然的结果就是,变化后的每一个值肯定是等于原来序列的某个值,因为 ...

  2. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  3. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  4. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  5. UVA 1626 Brackets sequence 区间DP

    题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...

  6. Ural 1183 Brackets Sequence(区间DP+记忆化搜索)

    题目地址:Ural 1183 最终把这题给A了.. .拖拉了好长时间,.. 自己想还是想不出来,正好紫书上有这题. d[i][j]为输入序列从下标i到下标j最少须要加多少括号才干成为合法序列.0< ...

  7. poj 1141 Brackets Sequence ( 区间dp+输出方案 )

    http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...

  8. HDU 1141---Brackets Sequence(区间DP)

    题目链接 http://poj.org/problem?id=1141 Description Let us define a regular brackets sequence in the fol ...

  9. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  10. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

随机推荐

  1. BAPI_GOODSMVT_CREATE的参数GOODSMVT_CODE的说明

    BAPI_GOODSMVT_CREATE 的功能就是用于货物移动,其主要可以实现MB*事物的一些功能,其中该BAPI的参数 GOODSMVT_CODE就控制了对应哪个事物码的功能,下面给出该参数的值和 ...

  2. 《Go 语言并发之道》读后感 - 第四章

    <Go 语言并发之道>读后感-第四章 约束 约束可以减轻开发者的认知负担以便写出有更小临界区的并发代码.确保某一信息再并发过程中仅能被其中之一的进程进行访问.程序中通常存在两种可能的约束: ...

  3. 面试常问的ArrayQueue底层实现

    public class ArrayQueue<T> extends AbstractList<T>{ //定义必要的属性,容量.数组.头指针.尾指针 private int ...

  4. 权限管理3-整合Spring Security

    一.Spring Security介绍 1.框架介绍 Spring 是一个非常流行和成功的 Java 应用开发框架.Spring Security 基于 Spring 框架,提供了一套 Web 应用安 ...

  5. Linux磁盘的分区操作

    1.Linux磁盘分区介绍 Linux磁盘分区主要有两种方式,一种是MBR,另一种是GPT.根据Linux磁盘分的大小,来选择一种分区方式. --MBR分区格式:最大支持 2 TB 的磁盘.--GPT ...

  6. spark开窗函数

    源文件内容示例: http://bigdata.beiwang.cn/laoli http://bigdata.beiwang.cn/laoli http://bigdata.beiwang.cn/h ...

  7. Markdown 编辑器+同步预览+文件笔记管理+静态博客 metadata 管理

    Leanote: 1. 笔记管理, 支持富文本, markdown, 写作模式.... 编辑器绝对好用. 另外特意为coder制作了一个贴代码的插件, 真是太贴心(因为作者也是coder) 2. 博客 ...

  8. Nginx配置代理gRPC的方法

    Nginx配置代理gRPC的方法_nginx_脚本之家 https://www.jb51.net/article/137330.htm

  9. P5687 网格图

    算法原理 根据 \(\operatorname{Kruskal}\) 算法的运算规则,每次总是会把当前边权最小,且连接着本不连通的两个点的边选中. 而在这道题目中,位于同一行或列的边的边权大小一定是相 ...

  10. Weblogic漏洞利用

    Weblogic漏洞 Weblogic任意文件上传(CVE-2018-2894) 受影响版本 weblogic 10.3.6.0.weblogic 12.1.3.0.weblogic 12.2.1.2 ...