[cogs729]圆桌问题(最大流)
模型
二分图多重匹配问题,可以用最大流解决。
实现
建立二分图,每个单位为X集合中的顶点,每个餐桌为Y集合中的顶点,增设附加源S和汇T。
1、从S向每个Xi顶点连接一条容量为该单位人数的有向边。
2、从每个Yi顶点向T连接一条容量为该餐桌容量的有向边。
3、X集合中每个顶点向Y集合中每个顶点连接一条容量为1的有向边。
求网络最大流,如果最大流量等于所有单位人数之和,则存在解,否则无解。对于每个单位,从X集合对应点出发的所有满流边指向的Y集合的顶点就是该单位人员的安排情况(一个可行解)。
分析
对于一个二分图,每个顶点可以有多个匹配顶点,称这类问题为二分图多重匹配问题。X,Y集合之间的边容量全部是1,保证两个点只能匹配一次(一个餐桌上只能有一个单位的一个人),源
汇的连边限制了每个点匹配的个数。求出网络最大流,如果流量等于X集合所有点与S边容量之和,那么则说明X集合每个点都有完备的多重匹配。
注意 cogs 需要写文件!
——代码
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 50001
#define M 5000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, m, cnt, sum, ans, s, t;
int head[N], to[M], val[M], next[M], dis[N], cur[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int v, d, ret = ;
for(int &i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
return ret;
} int main()
{
freopen("roundtable.in","r",stdin);
freopen("roundtable.out","w",stdout);
int i, j, x;
m = read();
n = read();
s = , t = n + m + ;
memset(head, -, sizeof(head));
for(i = ; i <= m; i++)
{
sum += x = read();
add(s, i, x), add(i, s, );
for(j = ; j <= n; j++)
add(i, j + m, ), add(j + m, i, );
}
for(i = ; i <= n; i++)
{
x = read();
add(i + m, t, x), add(t, i + m, );
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
ans += dfs(s, 1e9);
}
if(ans ^ sum)
{
puts("");
return ;
}
puts("");
for(i = ; i <= m; puts(""), i++)
for(j = head[i]; j ^ -; j = next[j])
if(!val[j])
printf("%d ", to[j] - m);
return ;
}
[cogs729]圆桌问题(最大流)的更多相关文章
- Luogu P3254 圆桌问题(最大流)
P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...
- 【P3254】圆桌问题(最大流,洛谷)
看到题目,产生第一反应,是否可以匹配的是这么多.那么连边跑一遍最大流就行了. 从源点向每个单位连一条长度为l的边,然后所有单位和餐桌分别连边,流量为1,所有餐桌向汇点连边,流量为餐桌容量.然后跑一遍最 ...
- LibreOJ 6004 圆桌聚餐 (最大流)
题解:天啊,这道最大流真是水的一批……只需要每张桌子向每个单位建一条容量为1的边,源点向桌子建边,容量为桌子能坐的人数;单位向汇点建边,容量为单位人数即可,然后根据单位与桌子的连边值是否为一来了解每个 ...
- 洛谷P3254 圆桌问题(最大流)
题意 $m$个不同单位代表参加会议,第$i$个单位有$r_i$个人 $n$张餐桌,第$i$张可容纳$c_i$个代表就餐 同一个单位的代表需要在不同的餐桌就餐 问是否可行,要求输出方案 Sol 比较zz ...
- LuoguP3254 圆桌问题(最大流)
题目描述 假设有来自m 个不同单位的代表参加一次国际会议.每个单位的代表数分别为ri (i =1,2,……,m). 会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐. ...
- 洛谷.3254.圆桌问题(最大流ISAP)
题目链接 日常水题 还是忍不住吐槽这题奇怪的评价 #include <cstdio> #include <cctype> #include <algorithm> ...
- 网络流24T
说出来你们可能不信,我咕了三个多星期了,今晚忽然不想再写题了,(写自闭了,把这边整理一下 1. 洛谷P2756 飞行员配对问题 二分图匹配: #include <bits/stdc++.h> ...
- 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)
------------------------------------------------------------------------------------ 17/24 --------- ...
- [cogs729] [网络流24题#5] 圆桌聚餐 [网络流,最大流,多重二分图匹配]
建图:从源点向单位连边,边权为单位人数,从单位向圆桌连边,边权为1,从圆桌向汇点连边,边权为圆桌容量. #include <iostream> #include <algorithm ...
随机推荐
- Ruby中访问控制符public,private,protected区别总结
重点关注private与protected public 默认即为public,全局都可以访问,这个不解释 private C++, “private” 意为 “private to this cla ...
- Controller接收处理json、xml格式数据
1.RequestBody接收json格式的数据,并直接转为对象. User.java使用lombok依赖包 @Data @AllArgsConstructor @NoArgsConstructor ...
- 《队长说得队》【Alpha】Scrum meeting 3
项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...
- QT5:介绍
一.简介 QT是一个跨平台的C++开发库,主要用来开发图形用户界面(Graphical User Interface,GUI) QT除了可以绘制漂亮的界面(包括控件/布局/交互),还可以多线程/访问数 ...
- 虚拟机设置NAT
需要开启虚拟机网络相关服务, 安装虚拟网卡, 还有必须安装 VMware Tools VMware虚拟机下实现NAT方式上网1. 把你的虚拟网卡VMnet8设置为自动获得IP.自动获得DNS服务器,启 ...
- EWS code return Error : Request failed. The remote server returned an error: (403) Forbidden OR (401) Unauthorized
Following is my code. ExchangeService service = new ExchangeService(ExchangeVersion.Exchange2007_SP1 ...
- 判断是否是同一人的方法——equals()?在Person类中提供一个比较的方法compare()返回boolean值?对象自己和自己比?
判断是否是同一人的方法——equals() 不能直接用per1==per2,这不是对象内容的比较而是存放对象地址的值得比较 在Person类中提供一个比较的方法compare()返回boolean值 ...
- 关于lua 5.3 服务端热更新流程
脚本的热更新的流程都大同小异, 第一步先保存旧代码的块的数据, 第二部加载新的代码块,第三步将旧代码块的局部和全局数据拷贝到新代码块的对应的 变量中. 在服务器热更新中,主要考虑热更的内容是什么, 一 ...
- Bzoj 3450: Tyvj1952 Easy (期望)
Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...
- RAID阵列搭建
RAID0 2个或2个以上磁盘,称为条带卷,无容错,可提高读写效率,其中一个磁盘损坏,所有文件不可读磁盘大小尽量统一,或者以最小的空间为标准,可用空间=N*min RAID1 2个或2个磁盘以上,称为 ...