传送门

模型

二分图多重匹配问题,可以用最大流解决。

实现

建立二分图,每个单位为X集合中的顶点,每个餐桌为Y集合中的顶点,增设附加源S和汇T。

1、从S向每个Xi顶点连接一条容量为该单位人数的有向边。

2、从每个Yi顶点向T连接一条容量为该餐桌容量的有向边。

3、X集合中每个顶点向Y集合中每个顶点连接一条容量为1的有向边。

求网络最大流,如果最大流量等于所有单位人数之和,则存在解,否则无解。对于每个单位,从X集合对应点出发的所有满流边指向的Y集合的顶点就是该单位人员的安排情况(一个可行解)。

分析

对于一个二分图,每个顶点可以有多个匹配顶点,称这类问题为二分图多重匹配问题。X,Y集合之间的边容量全部是1,保证两个点只能匹配一次(一个餐桌上只能有一个单位的一个人),源

汇的连边限制了每个点匹配的个数。求出网络最大流,如果流量等于X集合所有点与S边容量之和,那么则说明X集合每个点都有完备的多重匹配。

注意 cogs 需要写文件!

——代码

 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 50001
#define M 5000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, m, cnt, sum, ans, s, t;
int head[N], to[M], val[M], next[M], dis[N], cur[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int v, d, ret = ;
for(int &i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
return ret;
} int main()
{
freopen("roundtable.in","r",stdin);
freopen("roundtable.out","w",stdout);
int i, j, x;
m = read();
n = read();
s = , t = n + m + ;
memset(head, -, sizeof(head));
for(i = ; i <= m; i++)
{
sum += x = read();
add(s, i, x), add(i, s, );
for(j = ; j <= n; j++)
add(i, j + m, ), add(j + m, i, );
}
for(i = ; i <= n; i++)
{
x = read();
add(i + m, t, x), add(t, i + m, );
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
ans += dfs(s, 1e9);
}
if(ans ^ sum)
{
puts("");
return ;
}
puts("");
for(i = ; i <= m; puts(""), i++)
for(j = head[i]; j ^ -; j = next[j])
if(!val[j])
printf("%d ", to[j] - m);
return ;
}

[cogs729]圆桌问题(最大流)的更多相关文章

  1. Luogu P3254 圆桌问题(最大流)

    P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...

  2. 【P3254】圆桌问题(最大流,洛谷)

    看到题目,产生第一反应,是否可以匹配的是这么多.那么连边跑一遍最大流就行了. 从源点向每个单位连一条长度为l的边,然后所有单位和餐桌分别连边,流量为1,所有餐桌向汇点连边,流量为餐桌容量.然后跑一遍最 ...

  3. LibreOJ 6004 圆桌聚餐 (最大流)

    题解:天啊,这道最大流真是水的一批……只需要每张桌子向每个单位建一条容量为1的边,源点向桌子建边,容量为桌子能坐的人数;单位向汇点建边,容量为单位人数即可,然后根据单位与桌子的连边值是否为一来了解每个 ...

  4. 洛谷P3254 圆桌问题(最大流)

    题意 $m$个不同单位代表参加会议,第$i$个单位有$r_i$个人 $n$张餐桌,第$i$张可容纳$c_i$个代表就餐 同一个单位的代表需要在不同的餐桌就餐 问是否可行,要求输出方案 Sol 比较zz ...

  5. LuoguP3254 圆桌问题(最大流)

    题目描述 假设有来自m 个不同单位的代表参加一次国际会议.每个单位的代表数分别为ri (i =1,2,……,m). 会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐. ...

  6. 洛谷.3254.圆桌问题(最大流ISAP)

    题目链接 日常水题 还是忍不住吐槽这题奇怪的评价 #include <cstdio> #include <cctype> #include <algorithm> ...

  7. 网络流24T

    说出来你们可能不信,我咕了三个多星期了,今晚忽然不想再写题了,(写自闭了,把这边整理一下 1. 洛谷P2756 飞行员配对问题 二分图匹配: #include <bits/stdc++.h> ...

  8. 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)

    ------------------------------------------------------------------------------------ 17/24 --------- ...

  9. [cogs729] [网络流24题#5] 圆桌聚餐 [网络流,最大流,多重二分图匹配]

    建图:从源点向单位连边,边权为单位人数,从单位向圆桌连边,边权为1,从圆桌向汇点连边,边权为圆桌容量. #include <iostream> #include <algorithm ...

随机推荐

  1. 【UML】部署图Deployment diagram(实现图)(转)

    http://blog.csdn.net/sds15732622190/article/details/49049665 前言 下面要介绍UML中的部署图,和构件图一样,它也属于实现图的一种,五种静态 ...

  2. C07 模块化开发信息管理系统案例

    目录 需求分析 问题分析 开发阶段 需求分析 总体需求 学员信息管理系统支持以下功能 增加学员信息功能 删除学员信息功能 查询学员信息功能 修改学员信息功能 输出所有学员信息功能 退出系统 其他需求 ...

  3. bzoj4666 小z的胡话

    题目描述: bz 题解: 乱搞好题哇. 众所周知斐波那契数列是有循环节的. 我们可以搞出在模$10^x$下与所给得数同余的集合,那么在模$10^{x+1}$下,同余集合一定是原集合及循环若干循环节的大 ...

  4. jenkins+svn+pipeline+kubernetes部署java应用(二)

    在jenkins中只能通过http的方式获取svn的数据,所以需要配置svn的http访问方式 一.安装http服务端和mod_dav_svn插件 由于Subversion需要版本化的控制,因此标准的 ...

  5. 《linux设备驱动开发详解》笔记——14 linux网络设备驱动

    14.1 网络设备驱动结构 网络协议接口层:硬件无关,标准收发函数dev_queue_xmit()和netif_rx();  注意,netif_rx是将接收到的数据给上层,有时也在驱动收到数据以后调用 ...

  6. Python json和simplejson的使用

    在Python中,json数据和字符串的转换可以使用json模块或simplejson模块. json从Python2.6开始内置到了Python标准库中,我们不需要安装即可直接使用. simplej ...

  7. Python PycURL的安装使用

    PycURL中文简介:https://blog.csdn.net/qq_41185868/article/details/80487014 PycURL英文简介(如下):http://pycurl.i ...

  8. iOS 中的视图函数 init initwithnib viewDidLoad viewWillAppear的总结

    我要总结的函数主要是这几个: UIView *view-如果view还没有被初始化的话,getter方法会先调用[self loadView],如果getter或者setter方法被重写了,子类中的g ...

  9. C++基础——1.变量和基本类型(基于c++11)

    C++11类型 基本类型 字面值常量(literal) 比如:一个形如42的值,即为常量 变量 初始值 初始化不是赋值,初始化是创建变量的时候给一个初始值:而赋值是擦除当前值,用新值代替. 列表初始化 ...

  10. 算法学习记录-查找——二叉排序树(Binary Sort Tree)

    二叉排序树 也称为 二叉查找数. 它具有以下性质: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值. 它的左.右子树也分别 ...