传送门

模型

二分图多重匹配问题,可以用最大流解决。

实现

建立二分图,每个单位为X集合中的顶点,每个餐桌为Y集合中的顶点,增设附加源S和汇T。

1、从S向每个Xi顶点连接一条容量为该单位人数的有向边。

2、从每个Yi顶点向T连接一条容量为该餐桌容量的有向边。

3、X集合中每个顶点向Y集合中每个顶点连接一条容量为1的有向边。

求网络最大流,如果最大流量等于所有单位人数之和,则存在解,否则无解。对于每个单位,从X集合对应点出发的所有满流边指向的Y集合的顶点就是该单位人员的安排情况(一个可行解)。

分析

对于一个二分图,每个顶点可以有多个匹配顶点,称这类问题为二分图多重匹配问题。X,Y集合之间的边容量全部是1,保证两个点只能匹配一次(一个餐桌上只能有一个单位的一个人),源

汇的连边限制了每个点匹配的个数。求出网络最大流,如果流量等于X集合所有点与S边容量之和,那么则说明X集合每个点都有完备的多重匹配。

注意 cogs 需要写文件!

——代码

 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 50001
#define M 5000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, m, cnt, sum, ans, s, t;
int head[N], to[M], val[M], next[M], dis[N], cur[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int v, d, ret = ;
for(int &i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
return ret;
} int main()
{
freopen("roundtable.in","r",stdin);
freopen("roundtable.out","w",stdout);
int i, j, x;
m = read();
n = read();
s = , t = n + m + ;
memset(head, -, sizeof(head));
for(i = ; i <= m; i++)
{
sum += x = read();
add(s, i, x), add(i, s, );
for(j = ; j <= n; j++)
add(i, j + m, ), add(j + m, i, );
}
for(i = ; i <= n; i++)
{
x = read();
add(i + m, t, x), add(t, i + m, );
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
ans += dfs(s, 1e9);
}
if(ans ^ sum)
{
puts("");
return ;
}
puts("");
for(i = ; i <= m; puts(""), i++)
for(j = head[i]; j ^ -; j = next[j])
if(!val[j])
printf("%d ", to[j] - m);
return ;
}

[cogs729]圆桌问题(最大流)的更多相关文章

  1. Luogu P3254 圆桌问题(最大流)

    P3254 圆桌问题 题面 题目描述 假设有来自 \(m\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i (i =1,2,--,m)\) . 会议餐厅共有 \(n\) 张餐桌 ...

  2. 【P3254】圆桌问题(最大流,洛谷)

    看到题目,产生第一反应,是否可以匹配的是这么多.那么连边跑一遍最大流就行了. 从源点向每个单位连一条长度为l的边,然后所有单位和餐桌分别连边,流量为1,所有餐桌向汇点连边,流量为餐桌容量.然后跑一遍最 ...

  3. LibreOJ 6004 圆桌聚餐 (最大流)

    题解:天啊,这道最大流真是水的一批……只需要每张桌子向每个单位建一条容量为1的边,源点向桌子建边,容量为桌子能坐的人数;单位向汇点建边,容量为单位人数即可,然后根据单位与桌子的连边值是否为一来了解每个 ...

  4. 洛谷P3254 圆桌问题(最大流)

    题意 $m$个不同单位代表参加会议,第$i$个单位有$r_i$个人 $n$张餐桌,第$i$张可容纳$c_i$个代表就餐 同一个单位的代表需要在不同的餐桌就餐 问是否可行,要求输出方案 Sol 比较zz ...

  5. LuoguP3254 圆桌问题(最大流)

    题目描述 假设有来自m 个不同单位的代表参加一次国际会议.每个单位的代表数分别为ri (i =1,2,……,m). 会议餐厅共有n 张餐桌,每张餐桌可容纳ci (i =1,2,……,n)个代表就餐. ...

  6. 洛谷.3254.圆桌问题(最大流ISAP)

    题目链接 日常水题 还是忍不住吐槽这题奇怪的评价 #include <cstdio> #include <cctype> #include <algorithm> ...

  7. 网络流24T

    说出来你们可能不信,我咕了三个多星期了,今晚忽然不想再写题了,(写自闭了,把这边整理一下 1. 洛谷P2756 飞行员配对问题 二分图匹配: #include <bits/stdc++.h> ...

  8. 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)

    ------------------------------------------------------------------------------------ 17/24 --------- ...

  9. [cogs729] [网络流24题#5] 圆桌聚餐 [网络流,最大流,多重二分图匹配]

    建图:从源点向单位连边,边权为单位人数,从单位向圆桌连边,边权为1,从圆桌向汇点连边,边权为圆桌容量. #include <iostream> #include <algorithm ...

随机推荐

  1. input输入大于0的小数和整数

    <input onkeyup="num(this)"onbeforepaste="num(this)"> <script src='jquer ...

  2. CentOS lvm

    1.创建PVpvcreate /dev/sdb /dev/sdc或pvcreate /dev/sdb1 /dev/sdc1 2.查看PVpvdisplay 3.创建VGvgcreate vgdata ...

  3. 2018.5.14 PHP基础学习

    1.使用PHP输出HTML 使用PHP输出一个表格,并且通过style标签改变字体 <!--思考与练习--> <style type="text/css"> ...

  4. python_89_configparser模块

    用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser.在python2.x版本中为ConfigPsresr 来看一个好多软件的常见文档格式如下 [ ...

  5. springmvc的第一个程序

    文中用的框架版本:spring 3,hibernate 3,没有的,自己上网下. web.xml配置: <?xml version="1.0" encoding=" ...

  6. Truncate a string-freecodecamp算法题目

    Truncate a string(截断字符串) 要求 如果字符串的长度比指定的参数num长,则把多余的部分用...来表示. 插入到字符串尾部的三个点号也会计入字符串的长度. 如果指定的参数num小于 ...

  7. C++ Primer读书笔记(一)第一篇:C++概述,第一章:开始

    1. 主要内容 介绍程序语言的核心思想和C++的基本概念. 印象比较深刻的就是分而治之(divide and conque)的分解思想. 2. 知识广场 1) C++ 文件后缀 cc, cpp,,cx ...

  8. MySQL查询显示连续的结果

    #mysql中 对于查询结果只显示n条连续行的问题# 在领扣上碰到的一个题目:求满足条件的连续3行结果的显示 X city built a new stadium, each day many peo ...

  9. python入门:1-99所有数的和的等式

    #!/usr/bin/env python # -*- coding:utf-8 -*- #1-99所有数的和的等式 #start(开始,译音:思达二测)sum(合计,译音:桑木)temp(临时雇员, ...

  10. 【mysql】【转发】[Err]1267 - Illegal mix of collations(utf8_general_ci,IMPLICIT) and (utf8_unicode_ci,I

    [Err]1267 - Illegal mix of collations(utf8_general_ci,IMPLICIT) and (utf8_unicode_ci,IMPLICIT) for o ...