1. partial block operations are inefficient.

The operating system has to “fix up” your I/O by ensuring that everything occurs on block-aligned boundaries and rounding up to the next largest block

 
用户级程序可能在某一时刻仅仅读写一个字节,这是极大的浪费。Each of those one-byte writes is actually writing a whole block
user-buffered I/O:a way for applications to read and write data in whatever amounts feel natural but have the actual I/O occur in units of the filesystem
block size

2. User-buffered I/O

上如表明,只要将执行I/O操作的请求数设置为物理I/O块大小的整数倍 就可以获得很大的性能提升。Larger multiples will simply result in fewer system calls
使用stat系统调用可以获知文件I/O块大小
 
 #include <stdio.h>

 int main(int argc, char* argv[])
{
struct private {
char name[]; /* real name */
unsigned long booty; /* in pounds sterling */
unsigned int beard_len; /* in inches */
};
struct private p;
struct private blackbeard = {"Edward Teach", , }; FILE* out = fopen("data", "r");
if (out == NULL) {
fpiintf(stderr, "fopen error\n");
return ;
} if (fwrite(&blackbeard, sizeof(struct private), , out) == ) {
fprintf(stderr, "fwrite error\n");
return ;
} if (fclose(out)) {
fprintf(stderr, "fclose error\n");
return ;
} FILE* in = fopen("data", "r");
if (in == NULL) {
fprintf(stderr, "fopen error\n");
return ;
}
if (fread(&p, sizeof(struct private), , in) == ) {
fprintf(stderr, "fread error\n");
return ;
} if (fclose(in)) {
fprintf(stderr, "fclose error\n");
return ;
} fprintf(stdout, "name = \"%s\" booty = %lu beard_len = %u\n", p.name, p.booty, p.beard_len);
return ;
}
it's important to bear in mind that because of differences in variable sizes, alignment, and so on, binary data written with one application may not be readable by other applications. These things are guaranteed to remain constant only on a particular machine type with a particular ABI
 
fflush() merely writes the user-buffered data out to the kernel buffer. Calling fflush(), followed immediately by fsync(): that is, first ensure that
the  user buffer is written out to the kernel and then ensure that the kernel's buffer is written  out to disk.
int fileno (FILE *stream);   //返回文件流(C标准I/O库)对应的文件描述符(Unix系统调用) 
绝不能混用Unix系统调用I/O和C语言标准I/O
You should almost never  intermix file descriptor and stream-based I/O operations
 

3. 控制缓冲

标准I/O提供三种类型缓冲:
(1) 无缓冲:Data is submitted directly to the kernel. 无性能优势,基本不用。标准错误默认是无缓冲
(2) 行缓冲: With each newline character, the buffer is submitted to the kernel.  终端文件(标准输入输出)默认是行缓冲
(3) 块缓冲:Buffering is performed on a per-block basis. By default, all streams associated with files are block-buffered
 

4. 线程安全

标准I/O函数本身是线程安全的。标准I/O函数使用锁机制来确保进程内的多个线程可以并发执行标准I/O操作。(注意:确保线程安全的原子区域仅限于单一函数,多个I/O函数之间并不保证)
Any given thread must acquire the lock and become the owning thread before issuing any I/O requests,within the context of single function calls,
standard I/O operations are atomic
 
void flockfile (FILE *stream);
void funlockfile (FILE *stream);
 

5.标准I/O的缺陷

The biggest complaint with standard I/O is the performance impact from the double copy
reading data: kernel ==> standard I/O buffer ==> application buffer
writing data: application data ==> standard I/O buffer ==> kernel

Linux System Programming 学习笔记(三) 标准缓冲I/O的更多相关文章

  1. Linux System Programming 学习笔记(十一) 时间

    1. 内核提供三种不同的方式来记录时间 Wall time (or real time):actual time and date in the real world Process time:the ...

  2. Linux System Programming 学习笔记(四) 高级I/O

    1. Scatter/Gather I/O a single system call  to  read or write data between single data stream and mu ...

  3. Linux System Programming 学习笔记(二) 文件I/O

    1.每个Linux进程都有一个最大打开文件数,默认情况下,最大值是1024 文件描述符不仅可以引用普通文件,也可以引用套接字socket,目录,管道(everything is a file) 默认情 ...

  4. Linux System Programming 学习笔记(十) 信号

    1. 信号是软中断,提供处理异步事件的机制 异步事件可以是来源于系统外部(例如用户输入Ctrl-C)也可以来源于系统内(例如除0)   内核使用以下三种方法之一来处理信号: (1) 忽略该信号.SIG ...

  5. Linux System Programming 学习笔记(九) 内存管理

    1. 进程地址空间 Linux中,进程并不是直接操作物理内存地址,而是每个进程关联一个虚拟地址空间 内存页是memory management unit (MMU) 可以管理的最小地址单元 机器的体系 ...

  6. Linux System Programming 学习笔记(七) 线程

    1. Threading is the creation and management of multiple units of execution within a single process 二 ...

  7. Linux System Programming 学习笔记(六) 进程调度

    1. 进程调度 the process scheduler is the component of a kernel that selects which process to run next. 进 ...

  8. Linux System Programming 学习笔记(一) 介绍

    1. Linux系统编程的三大基石:系统调用.C语言库.C编译器 系统调用:内核向用户级程序提供服务的唯一接口.在i386中,用户级程序执行软件中断指令 INT n 之后切换至内核空间 用户程序通过寄 ...

  9. Linux System Programming 学习笔记(八) 文件和目录管理

    1. 文件和元数据 每个文件都是通过inode引用,每个inode索引节点都具有文件系统中唯一的inode number 一个inode索引节点是存储在Linux文件系统的磁盘介质上的物理对象,也是L ...

随机推荐

  1. Bootstrap历练实例:向列表组添加内容

    向列表组添加自定义内容 我们可以向上面已添加链接的列表组添加任意的 HTML 内容.下面的实例演示了这点: <!DOCTYPE html><html><head>& ...

  2. k8s的Pod控制器

    pod的配置清单常见选项: apiVersion,kind,metadata,spec,status(只读) spec: containers: nodeSelector: nodeName: res ...

  3. LeetCode之Weekly Contest 91

    第一题:柠檬水找零 问题: 在柠檬水摊上,每一杯柠檬水的售价为 5 美元. 顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯. 每位顾客只买一杯柠檬水,然后向你付 5 美元.10  ...

  4. mysql 编程

    一.存储函数 相当于php或者js中有返回值的函数 --完成一定“计算”后返回单个的数据值 定义: create function 函数名(parameter p1 value_type, param ...

  5. zookeeper伪集群(一)

    Zookeeper的安装和配置十分简单, 既可以配置成单机模式, 也可以配置成伪集群模式.集群模式. 本人将对伪集群.集群进行重点介绍: 铺垫: 1.集群必须是奇数(2N+1),伪集群和集群一致. 2 ...

  6. 树莓派编译ncnn

    1.从github上下载ncnn git clone --recursive https://github.com/Tencent/ncnn 2.在ncnn根目录下创建build目录,安装cmake编 ...

  7. AND和OR

    AND和OR用于组合多个选择条件,即用于组合where之中的多个条件

  8. Aizu - 1378 Secret of Chocolate Poles (DP)

    你有三种盘子,黑薄,白薄,黑厚. 薄的盘子占1,厚的盘子占k. 有一个高度为L的桶,盘子总高度不能超出桶的总高度(可以小于等于).相同颜色的盘子不能挨着放. 问桶内装盘子的方案数. 如 L = 5,k ...

  9. Java基础之封装

    封装(Encapsulation)是java面向对象的三大特性,之前学java迷迷糊糊,一直也没弄清楚什么是封装以及为什么要封装,直到这次看书才有一种被点醒的感觉. java中的封装是针对某个类而言的 ...

  10. 新线程 handler

    class CalculateThread extends Thread { private Handler handler; @Override public void run() { super. ...