UOJ #311「UNR #2」积劳成疾
需要锻炼$ DP$能力
题意
等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列
定义其价值为所有长度为$ k$的连续子数列的最大值的乘积
给定$ n,k$求所有合法数列的价值和
题解
设$ f(x,y)$表示长度为$x$的数列中,最值不超过$ y$的所有数列的价值和
若数列的最值不是$ y$则$ f(x,y)=f(x,y-1)$
否则枚举最左边的最值位置,设为位置$ i$
则$ f(x,y)$可由$f(i-1,y-1)·w(y)^{calc(i)}·f(x-i,y)$转移过来
其中$ calc(i)$表示在长度为$ x$的数列中有多少个长度为$ k$的数列包含第$ i$个位置
时间复杂度$ O(n^3)$
代码
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans;
int w[];
int calc(int x,int y){
int L=max(,x-m+),R=min(x,y-m+);
return max(,R-L+);
}
int f[][],mi[][];
int main(){
n=read();m=read();
for(rt i=;i<=n;i++)w[i]=read();
for(rt i=;i<=n;i++)f[][i]=;
for(rt i=;i<=n;i++){
mi[i][]=;
for(rt j=;j<=n;j++)mi[i][j]=1ll*mi[i][j-]*w[i]%p;
}
for(rt i=;i<=n;i++)
for(rt j=;j<=n;j++){
if(j>)f[i][j]=f[i][j-];
for(rt k=;k<=i;k++)(f[i][j]+=1ll*f[k-][j-]*f[i-k][j]%p*mi[j][calc(k,i)]%p)%=p;
}
cout<<f[n][n];
return ;
}
UOJ #311「UNR #2」积劳成疾的更多相关文章
- UOJ #310「UNR #2」黎明前的巧克力
神仙题啊... UOJ #310 题意 将原集合划分成$ A,B,C$三部分,要求满足$ A,B$不全为空且$ A$的异或和等于$ B$的异或和 求方案数 集合大小 $n\leq 10^6$ 值域$v ...
- uoj#311. 【UNR #2】积劳成疾(期望dp)
传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...
- uoj#311 【UNR #2】积劳成疾
题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- 「UNR#1」奇怪的线段树
「UNR#1」奇怪的线段树 一道好题,感觉解法非常自然. 首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了.然后发现一次染色最下面的那些区间一 ...
- 【uoj#311】[UNR #2]积劳成疾 dp
题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...
- Solution -「UNR #5」「UOJ #671」诡异操作
\(\mathcal{Desciprtion}\) Link. 给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- Diary / Solution Set -「WC 2022」线上冬眠做噩梦
大概只有比较有意思又不过分超出能力范围的题叭. 可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics 任意一个 ...
随机推荐
- SpringMVC处理请求和返回流程
流程描述:一个url请求,找打指定的requestMapping再返回指定的jsp界面 通过url拿到指定的java方法 HandlerExecutionChain mappedHandler = ...
- Linux使用百度云
导读 百度云没有Linux客户端,于是有大神用Go语言写出来一个叫BaiduPCS-Go的命令行盘客户端,可以通过终端操作百度云盘,在Linux上实现上传下载.但是因为是命令行版本的,对没有命令行使用 ...
- (转)JMeter学习逻辑控制器
JMeter中的Logic Controller用于为Test Plan中的节点添加逻辑控制器. JMeter中的Logic Controller分为两类:一类用来控制Test Plan执行过程中节点 ...
- Vue学习笔记5
列表渲染 用 v-for 把一个数组对应为一组元素 <div id="app"> <li v-for = "item in array"> ...
- LIS的O(nlogn)算法
出自蓝书<算法竞赛入门经典训练指南> 求最长上升子序列是很常见的可以用动态规划解决的问题…… 很容易根据最优子结构之类的东西得出 $\text{dp}[i]$为以第i个数结尾的最长上升子序 ...
- 【数学建模】MATLAB语法
一.向量.矩阵的表示和使用 format long %小数很多format short %默认4位小数format rat %显示最近的分数format short e %指数格式的数 尾数多少 e ...
- POJ1509 Glass Beads 【后缀自动机】
题目分析: 模板练手.看最长能走多远. 代码: #include<iostream> #include<cstdio> #include<cstdlib> #inc ...
- 利用 Python_tkinter 完成 2048 游戏
成品展示 具备基本的数据合并以及分数统计,不同数字的色块不同 产生随机数, 数据无法合并判定以及重新开始选项 同时可以判定游戏失败条件 需求分析 完成基本数据合并算法 游戏结束条件 界面展示 重置按钮 ...
- Meterpreter提权详解
0x01 Meterpreter自动提权 1.生成后门程序 我们在kali的命令行下直接执行以下命令获得一个针对windows的反弹型木马: msfvenom -p windows/meterpr ...
- 2019南昌邀请赛网络预选赛 J.Distance on the tree(树链剖分)
传送门 题意: 给出一棵树,每条边都有权值: 给出 m 次询问,每次询问有三个参数 u,v,w ,求节点 u 与节点 v 之间权值 ≤ w 的路径个数: 题解: 昨天再打比赛的时候,中途,凯少和我说, ...