UOJ #311「UNR #2」积劳成疾
需要锻炼$ DP$能力
题意
等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列
定义其价值为所有长度为$ k$的连续子数列的最大值的乘积
给定$ n,k$求所有合法数列的价值和
题解
设$ f(x,y)$表示长度为$x$的数列中,最值不超过$ y$的所有数列的价值和
若数列的最值不是$ y$则$ f(x,y)=f(x,y-1)$
否则枚举最左边的最值位置,设为位置$ i$
则$ f(x,y)$可由$f(i-1,y-1)·w(y)^{calc(i)}·f(x-i,y)$转移过来
其中$ calc(i)$表示在长度为$ x$的数列中有多少个长度为$ k$的数列包含第$ i$个位置
时间复杂度$ O(n^3)$
代码
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans;
int w[];
int calc(int x,int y){
int L=max(,x-m+),R=min(x,y-m+);
return max(,R-L+);
}
int f[][],mi[][];
int main(){
n=read();m=read();
for(rt i=;i<=n;i++)w[i]=read();
for(rt i=;i<=n;i++)f[][i]=;
for(rt i=;i<=n;i++){
mi[i][]=;
for(rt j=;j<=n;j++)mi[i][j]=1ll*mi[i][j-]*w[i]%p;
}
for(rt i=;i<=n;i++)
for(rt j=;j<=n;j++){
if(j>)f[i][j]=f[i][j-];
for(rt k=;k<=i;k++)(f[i][j]+=1ll*f[k-][j-]*f[i-k][j]%p*mi[j][calc(k,i)]%p)%=p;
}
cout<<f[n][n];
return ;
}
UOJ #311「UNR #2」积劳成疾的更多相关文章
- UOJ #310「UNR #2」黎明前的巧克力
神仙题啊... UOJ #310 题意 将原集合划分成$ A,B,C$三部分,要求满足$ A,B$不全为空且$ A$的异或和等于$ B$的异或和 求方案数 集合大小 $n\leq 10^6$ 值域$v ...
- uoj#311. 【UNR #2】积劳成疾(期望dp)
传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...
- uoj#311 【UNR #2】积劳成疾
题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...
- 「UNR#2」黎明前的巧克力
「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...
- 「UNR#1」奇怪的线段树
「UNR#1」奇怪的线段树 一道好题,感觉解法非常自然. 首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了.然后发现一次染色最下面的那些区间一 ...
- 【uoj#311】[UNR #2]积劳成疾 dp
题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...
- Solution -「UNR #5」「UOJ #671」诡异操作
\(\mathcal{Desciprtion}\) Link. 给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- Diary / Solution Set -「WC 2022」线上冬眠做噩梦
大概只有比较有意思又不过分超出能力范围的题叭. 可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics 任意一个 ...
随机推荐
- 基于Armitage的MSF自动化集成攻击实践
基于Armitage的MSF自动化集成攻击实践 目录 0x01 实践环境 0x02 预备知识 0x03 Armitage基础配置 0x04 Nmap:Armitage下信息搜集与漏洞扫描 0x05 A ...
- 跳跳棋[LCA+二分查找]-洛谷1852
传送门 这真是一道神仙题 虽然我猜到了这是一道LCA的题 但是... 第一遍看题,我是怎么也没想到能和树形图扯上关系 并且用上LCA 但其实其实和上一道lightoj上的那道题很类似 只不过那时一道很 ...
- Java面试准备之JVM
介绍JVM中7个区域,然后把每个区域可能造成内存的溢出的情况说明 程序计数器:看做当前线程所执行的字节码行号指示器.是线程私有的内存,且唯一一块不报OutOfMemoryError异常. Java虚拟 ...
- 使用.net core搭建文件服务器
标题之所以带上.net core,而不是.net就是由于两者在类库的使用以及部署环境有很大的差别,所以特此说明. 长话短说,直接开始! 1.新建一个.net core项目,版本是2.0,为了方便就建一 ...
- ABP中的拦截器之ValidationInterceptor(上)
从今天这一节起就要深入到ABP中的每一个重要的知识点来一步步进行分析,在进行介绍ABP中的拦截器之前我们先要有个概念,到底什么是拦截器,在介绍这些之前,我们必须要了解AOP编程思想,这个一般翻译是面向 ...
- 【BZOJ5496】[十二省联考2019]字符串问题(后缀树)
[BZOJ5496][十二省联考2019]字符串问题(后缀树) 题面 BZOJ 洛谷 题解 首先显然可以把具有支配关系的串从\(A\)到\(B\)连一条有向边,如果\(B_i\)是\(A_j\)的前缀 ...
- 【dfs】P1433 吃奶酪
题目描述 房间里放着n块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处. 输入输出格式 输入格式: 第一行一个数n (n<=15) 接下来每行2个实数,表示第i块 ...
- jvm学习笔记二(减少GC开销的建议)
一:触发主GC(Garbage Collector)的条件 JVM进行次GC的频率很高,但因为这种GC占用时间极短,所以对系统产生的影响不大.更值得关注的是主GC的触发条件,因为它对系统影响很明显.总 ...
- Java Web项目中解决中文乱码方法总结
一.了解常识: 1.UTF-8国际编码,GBK中文编码.GBK包含GB2312,即如果通过GB2312编码后可以通过GBK解码,反之可能不成立; 2.web tomcat:默认是ISO8859-1,不 ...
- windows下用pycharm安装tensorflow简易教程
https://blog.csdn.net/heros_never_die/article/details/79760616 最近开始学习深度学习的相关知识,准备实战一下,看了一些关于tensorfl ...