需要锻炼$ DP$能力

UOJ #311


题意

等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列

定义其价值为所有长度为$ k$的连续子数列的最大值的乘积

给定$ n,k$求所有合法数列的价值和


题解

设$ f(x,y)$表示长度为$x$的数列中,最值不超过$ y$的所有数列的价值和

若数列的最值不是$ y$则$ f(x,y)=f(x,y-1)$

否则枚举最左边的最值位置,设为位置$ i$

则$ f(x,y)$可由$f(i-1,y-1)·w(y)^{calc(i)}·f(x-i,y)$转移过来

其中$ calc(i)$表示在长度为$ x$的数列中有多少个长度为$ k$的数列包含第$ i$个位置

时间复杂度$ O(n^3)$


代码

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans;
int w[];
int calc(int x,int y){
int L=max(,x-m+),R=min(x,y-m+);
return max(,R-L+);
}
int f[][],mi[][];
int main(){
n=read();m=read();
for(rt i=;i<=n;i++)w[i]=read();
for(rt i=;i<=n;i++)f[][i]=;
for(rt i=;i<=n;i++){
mi[i][]=;
for(rt j=;j<=n;j++)mi[i][j]=1ll*mi[i][j-]*w[i]%p;
}
for(rt i=;i<=n;i++)
for(rt j=;j<=n;j++){
if(j>)f[i][j]=f[i][j-];
for(rt k=;k<=i;k++)(f[i][j]+=1ll*f[k-][j-]*f[i-k][j]%p*mi[j][calc(k,i)]%p)%=p;
}
cout<<f[n][n];
return ;
}

UOJ #311「UNR #2」积劳成疾的更多相关文章

  1. UOJ #310「UNR #2」黎明前的巧克力

    神仙题啊... UOJ #310 题意 将原集合划分成$ A,B,C$三部分,要求满足$ A,B$不全为空且$ A$的异或和等于$ B$的异或和 求方案数 集合大小 $n\leq 10^6$ 值域$v ...

  2. uoj#311. 【UNR #2】积劳成疾(期望dp)

    传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...

  3. uoj#311 【UNR #2】积劳成疾

    题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...

  4. 「UNR#2」黎明前的巧克力

    「UNR#2」黎明前的巧克力 解题思路 考虑一个子集 \(S\) 的异或和如果为 \(0\) 那么贡献为 \(2^{|S|}\) ,不难列出生产函数的式子,这里的卷积是异或卷积. \[ [x^0]\p ...

  5. 「UNR#1」奇怪的线段树

    「UNR#1」奇怪的线段树 一道好题,感觉解法非常自然. 首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了.然后发现一次染色最下面的那些区间一 ...

  6. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  7. Solution -「UNR #5」「UOJ #671」诡异操作

    \(\mathcal{Desciprtion}\)   Link.   给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...

  8. 【UOJ#311】【UNR #2】积劳成疾(动态规划)

    [UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...

  9. Diary / Solution Set -「WC 2022」线上冬眠做噩梦

      大概只有比较有意思又不过分超出能力范围的题叭.   可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics   任意一个 ...

随机推荐

  1. 利用XShell上传、下载文件(使用sz与rz命令)

    XSHELL工具上传文件到Linux以及下载文件到本地(Windows)   Xshell很好用,然后有时候想在windows和linux上传或下载某个文件,其实有个很简单的方法就是rz,sz.首先你 ...

  2. 洛谷P2243 电路维修

    题目地址 转化为图论问题 对于每个交叉点(X,Y)抽象成节点.与它相邻的四个点中,可以直接连线的边权为0,否则边权为1. 用死了的SPFA解决图论问题. #include <cstring> ...

  3. 24 python初学(异常)

    try, except, else, finally执行顺序:1. 先执行 try 里面的代码块,如果发生异常就会去捕获. 2. 没有错误就会执行 else 里面的信息. 3. 无论怎样都会执行 fi ...

  4. python3 二分法查找

    '''二分法查找有序列表掐头去尾取中间查找列表中xx在不在列表中,在,则返回索引值'''# lst = [1, 4, 6, 8, 9, 21, 23, 26, 35, 48, 49, 54, 67, ...

  5. Linux内核入门到放弃-模块-《深入Linux内核架构》笔记

    使用模块 依赖关系 modutils标准工具集中的depmod工具可用于计算系统的各个模块之间的依赖关系.每次系统启动时或新模块安装后,通常都会运行该程序.找到的依赖关系保存在一个列表中.默认情况下, ...

  6. mysql 提高一 动态sql 传变量

    1.需求 DELIMITER $$ SECOND STARTS '2018-09-07 08:00:00' ON COMPLETION PRESERVE ENABLE DO BEGIN ) DEFAU ...

  7. js中“==”与“===”区别

    直接上代码 if(2==='2'){ console.log(true) }else{ console.log(false) } //打印结果 false if(2=='2'){ console.lo ...

  8. BOS判断字段为空

  9. Python——pickle模块(永久存储)

    一.作用 讲字典.列表.字符串等对象进行持久化,存储到磁盘上,方便以后使用. 二.dump()方法 pickle.dump(对象,文件,[使用协议]) 作用:将要持久化的数据“对象”,保存到“文件中” ...

  10. git 回退各种场景操作

    在git的一般使用中,如果发现错误的将不想提交的文件add进入index之后,想回退取消,则可以使用命令:git reset HEAD <file>...,同时git add完毕之后,gi ...