[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组: $$\bex \cfrac{\rd {\bf x}}{\rd t}=\sex{{\bf x}\cdot\n}{\bf u}. \eex$$
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- MySQL 5.7.13 的一个BUG
mysql今天从5.6切到5.7,在测试环境中,日志是全部打印的,发现打了一个警告: Incorrect string value: '\xD6\xD0\xB9\xFA\xB1\xEA...' for ...
- C#基础知识之特性
一.什么是特性 个人理解:特性本质上也是有一种类,通过添加特性,就可以实例化这个特性类:添加特性就是在类.方法.结构.枚举.组件等上面加一个标签,使这些类.方法.结构.枚举.组件等具有某些统一的特征, ...
- Kubernetes-基于flannel的集群网络
1.Docker网络模式 在讨论Kubernetes网络之前,让我们先来看一下Docker网络.Docker采用插件化的网络模式,默认提供bridge.host.none.overlay.maclan ...
- java获取真实的IP地址工具类
在实际项目中,有调用微信支付完成支付功能,在微信支付的请求参数中需要传递一个本机的ip地址,java代码运行环境目前为windows10以及centos7. 以下为获取ip地址工具类: package ...
- AttributeError: Got AttributeError when attempting to get a value for field `password2` on serializer ` UserSerializer`...
Error_msg: AttributeError: Got AttributeError when attempting to get a value for field `password2` o ...
- Daily Scrum 12.20
Member Task on 12.20 Task on 12.21 仇栋民 继续Task972 : 完成活动评分基础功能 完成Task972 : 完成活动评分基础功能 康家华 完成 Task1010 ...
- 个人hp笔记本默认设置更改
1.将F1-F12默认的多媒体键(调静音亮度控制声音大小等)改为功能键: (****笔记本型号为惠普****) ·进入BIOS方法:关机状态下,按电源键开机,立刻连续多次点击ESC,看到 F1.F2. ...
- IdentityServer4【Topic】Consent
Conset这个概念在Identityserver4中是表示要当前用户对第三方应用对资源请求的一个确认,它会被做成一个页面. 术语映射: Consent page--确认页面,我喜欢叫做Consent ...
- EntityFramework Core笔记:表结构及数据基本操作(2)
1. 表结构操作 1.1 表名 Data Annotations: using System.ComponentModel.DataAnnotations.Schema; [Table("R ...
- Python——迭代器
一.概述 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 二.可迭代的对象 序列:字符串.列表.元组 非序列:字典.文件 三 ...