rmq问题模板处理
rmq问题:
先贴一下定义
范围最值查询
维基百科,自由的百科全书范围最值查询(Range Minimum Query),是针对数据集的一种条件查询。若给定一个数组 A[1, n],范围最值查询指定一个范围条件 i 到 j,要求取出 A[i, j] 中最大/小的元素。
若 A = [3, 5, 2, 5, 4, 3, 1, 6, 3],条件为 [3, 8] 的范围最值查询返回 1,它是子数组 A[3, 8] = [2, 5, 4, 3, 1, 6]中最小的元素。
通常情况下,数组 A 是静态的,即元素不会变化,例如插入、删除和修改等,而所有的查询是以在线的方式给出的,即预先并不知道所有查询的参数。
RMQ 问题有预处理 O ( n ) {\displaystyle O(n)}
之后每次查询 O ( 1 ) {\displaystyle O(1)}
的算法[1]。
范围最值查询问题(RMQ)与最近公共祖先 (图论)(LCA)问题有直接联系,它们可以互相转化。RMQ 的算法常常应用在严格或者近似子串匹配等问题的处理中。
暴力的去查询,期望复杂度是O(N)查询,O(N)处理
用线段树维护,期望复杂度O(logN)查询,O(N)处理
当然还有更优秀的ST算法(稀疏表算法)
----以上均转自维基百科
相对比线段树维护,st算法可以做到O(1)回答,复杂度有了不少的优化
#pragma GCC optimize("O2")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<limits.h>
#include<ctime>
#define N 100001
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=2017;
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch>'9'|ch<'0')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return f*x;
}
int rmq[30][N],lg[N];
void init(int n)
{
for(int i=2;i<=n;i++)
lg[i]=lg[i>>1]+1;
for(int i=1;i<=lg[n];i++)
for(int j=1;j<=n+1-(1<<i);j++)
rmq[i][j]=min(rmq[i-1][j],rmq[i-1][j+(1<<(i-1))]);
}
int rminq(int l,int r)
{
if(l>r)swap(l,r);
int x=lg[r-l+1];
return min(rmq[x][l],rmq[x][r+1-(1<<x)]);
}
int main()
{
int n=read(),m=read();
for(int i=1;i<=n;i++)
rmq[0][i]=read();
for(int i=1;i<=m;i++)
{
int l=read(),r=read();
printf("%d\n",rminq(l,r));
}
}
O ( N l o g N + Q ) {\displaystyle O(NlogN+Q)},Q 为查询数。
rmq问题模板处理的更多相关文章
- poj 3264 Balanced Lineup (RMQ算法 模板题)
RMQ支持操作: Query(L, R): 计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...
- RMQ 2d 模板
#include<iostream> #include<cstdio> #include<string.h> #include<string> #inc ...
- RMQ(模板 ST 区间最值,频繁的间隔时间)
PS: 介绍:http://blog.csdn.net/liang5630/article/details/7917702 RMQ算法.是一个高速求区间最值的离线算法,预处理时间复杂度O(n*log( ...
- ZOJ 2859 二维RMQ(模板)
这题求范围最小值,RMQ正好是用来解决这方面的.所以再适合只是了,又是离线静态输入输出的,所以时间比二维线段树快. #include<iostream> #include<cstdi ...
- RMQ算法模板
分别写了下标从0和1开始的两种 #include<stdio.h> #include<string.h> #include<algorithm> #include& ...
- 倍增算法总结 ( 含RMQ模板)
部分题目来自<算法竞赛设计进阶> 问题 给定一个长度为n的数列A,有m个询问,每次给定一个整数T,求出最大的k,满足a[1],a[2]……a[k]的和小于等于T(不会打sigm ...
- RMQ 模板题 poj 3264
题目:点这里 题意:给一个长度n的数列,然后又Q个询问,问L 到R 中最大值与最小值的差. 分析:RMQ 的模板题. 代码: #include<stdio.h> #include& ...
- LCA和RMQ
下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...
- RMQ (Range Minimal Query) 问题 ,稀疏表 ST
RMQ ( 范围最小值查询 ) 问题是一种动态查询问题,它不需要修改元素,但要及时回答出数组 A 在区间 [l, r] 中最小的元素值. RMQ(Range Minimum/Maximum Query ...
随机推荐
- sea.js简单使用教程
sea.js简单使用教程 下载sea.js, 并引入 官网: http://seajs.org/ github : https://github.com/seajs/seajs 将sea.js导入项目 ...
- mycat 使用
介绍 支持SQL92标准 支持MySQL.Oracle.DB2.SQL Server.PostgreSQL等DB的常见SQL语法 遵守Mysql原生协议,跨语言,跨平台,跨数据库的通用中间件代理. 基 ...
- EffectiveC++ 第5章 实现
我根据自己的理解,对原文的精华部分进行了提炼,并在一些难以理解的地方加上了自己的"可能比较准确"的「翻译」. Chapter 5 实现 Implementations 适当提出属于 ...
- Xvector in Kaldi nnet3
Xvector nnet Training of Xvector nnet Xvector nnet in Kaldi Statistics Extraction Layer in Kaldi ...
- visual studio code运行时报错,Cannot find module 'webpack'
前言 今天运行是visual studio code时,报了一个错误Cannot find module 'webpack' ,网上找了很多方法都没解决.下面一起来看看怎么解决 正文 报错: npm ...
- ES6走一波 数组的扩展
Array flat 数组实例的扁平化方法(浏览器支持不佳) 建议使用 lodash的 flatten
- 集成方法 Boosting原理
1.Boosting方法思路 Boosting方法通过将一系列的基本分类器组合,生成更好的强学习器 基本分类器是通过迭代生成的,每一轮的迭代,会使误分类点的权重增大 Boosting方法常用的算法是A ...
- gcc 8.2.1 / MCF thread 简介
gcc 8.2.1 下载 地址 https://gcc-mcf.lhmouse.com/ MCF threadhttps://github.lhmouse.com/ MCF thread 简介MCF ...
- $a=[1,2,3,4,5]; $b=[a,b,c,d,e]; 转成[[1,a],[2,b],[3,c],[4,d],[5,3]]
$a=[1,2,3,4,5]; $b=[a,b,c,d,e]; 结果 [[1,a],[2,b],[3,c],[4,d],[5,3]] return array_map(function($v1,$v2 ...
- 解决Linux(Loaded plugins: fastestmirror Please use /usr/bin/yum --help)
大概意思是fastestmirror不能使用,fastestmirror是yum的一个加速插件 处理办法就是禁用这个插件 方法两种 第一种 vi /etc/yum/pluginconf.d/faste ...