LIS问题
LIS定义
LIS(Longest Increasing Subsequence)最长上升子序列 。
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。
比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
O(N^2)做法:dp动态规划
状态设计:dp[i]代表以a[i]结尾的LIS的长度
状态转移:dp[i]=max(dp[i], dp[j]+1) (0<=j< i, a[j]< a[i])
边界处理:dp[i]=1 (0<=j< n)
时间复杂度:O(N^2)
举例: 对于序列(1, 7, 3, 5, 9, 4, 8),dp的变化过程如下

求完dp数组后,取其中的最大值就是LIS的长度。【注意答案不是dp[n-1],这个样例只是巧合】
简单示例代码:
#include<iostream> //
#include<string.h>//
#include<algorithm>
using namespace std; int dp[],a[];//dp[i]表示以a[i]结尾升序列的长度
int main()
{
int i,j,n,ans=;
cin>>n;
for(i=;i<n;i++){
cin>>a[i];
dp[i]=;//最短是自身
} for(i=;i<n;i++){
for(j=;j<i;j++){
if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+);
}
ans=max(ans,dp[i]);
}
cout<<ans;
return ;
}
O(NlogN)做法:贪心+二分
导弹问题:https://www.cnblogs.com/cstdio1/p/11329076.html
//注意dp数组不是最长升序列,这个方法只适合求最长长度
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
int a[N],dp[N];
int main() {
int n,len=;
cin>>n;
for(int i=;i<n;i++){
cin>>a[i];
}
dp[]=a[];
for(int i=;i<n;i++){//LIS最长增序列
if(a[i]>=dp[len]){
len++;
dp[len]=a[i];
}
else{//因为是递增数组,左边的越小,可以插入的可能性就越大,
// 所以找到第一个大于a[i]的用a[i]以替换就ok了
int p=upper_bound(dp,dp+len,a[i])-dp;
dp[p]=a[i];
} }
cout<<len+<<endl;
return ; //结束
}
LIS问题的更多相关文章
- Lis日常维护
1.[问题]护士站打印LIs条码,出来是PDF格式的 [解决]在文件夹Client\NeusoftLis\Xml\Print.xml中把BarcodePrint Name的值改成安装的斑马打印机名(不 ...
- uva10635 LIS
Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n c ...
- Codeforces 486E LIS of Sequence 题解
题目大意: 一个序列,问其中每一个元素是否为所有最长上升子序列中的元素或是几个但不是所有最长上升子序列中的元素或一个最长上升子序列都不是. 思路: 求以每一个元素为开头和结尾的最长上升子序列长度,若两 ...
- 出操队形(LIS)
题目来源:微策略2013年校园招聘面试一面试题 题目描述: 在读高中的时候,每天早上学校都要组织全校的师生进行跑步来锻炼身体,每当出操令吹响时,大家就开始往楼下跑了,然后身高矮的排在队伍的前面,身高较 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- 从LIS问题浅谈动态规划
今天以LIS问题切入动态规划,现在做一些简单的总结. LIS问题: http://www.cnblogs.com/Booble/archive/2010/11/27/1889482.html
- [noip科普]关于LIS和一类可以用树状数组优化的DP
预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...
- Hdu 3564 Another LIS 线段树+LIS
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- About LIS(Longest Increasing Subsequence)
今天528给讲了基础的DP,其中第一道例题就是最长不下降子序列——LIS. 题目简述:给出N个数,求最长不下降子序列的长度. 数据范围:30% N<=1000 ; 100% N<=1000 ...
随机推荐
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- netty同时实现http与socket
(1)启动类 package test; import io.netty.bootstrap.ServerBootstrap; import io.netty.channel.EventLoopGro ...
- idea使用小技巧
1.按住alt,鼠标往下拉一条直线,可以选中一列或多列,或者不选中任何文字,可以让光标定位到这几行的相同的列的位置,然后输入文本,发现在被选中的所有行同时输入了这些文本(类似notepad++): 2 ...
- 高级T-SQL进阶系列 (一)【中篇】:使用 CROSS JOIN 介绍高级T-SQL
[译注:此文为翻译,由于本人水平所限,疏漏在所难免,欢迎探讨指正] 原文连接:传送门. 当一个CROSS JOIN 表现得如同一个INNER JOIN 在上一章节我提到当你使用一个CROSS JOIN ...
- 基于通用二进制方式安装MySQL-5.7.24(比源码安装MySQL快许多)及破密码
确保系统中有依赖的libaio软件 yum -y install libaio 使用wget命令下载mysql-5.7.24软件包 wget http://mirrors.sohu.com/mysql ...
- linux下的npm安装
curl --silent --location https://rpm.nodesource.com/setup_10.x | bash - yum install -y nodejs npm in ...
- Nessus忘记用户名和密码
以管理员身份运行cmd,切换到Nessus的安装目录,执行以下操作.
- Linux命令:route命令
route显示或修改IP路由表 route -n:显示路由信息,使用数字格式显示,不反解地址到主机名 #route -n Kernel IP routing table Destination Gat ...
- R语言 一个向量的值分派给另一个向量
group = sample(seq(1,10),size = 20,replace = T) #这20个组分别属于1,...,10 v = rnorm(length(unique(group)),0 ...
- 使用package.json安装模块
node.js模块的安装可以使用npm安装,如下: $ npm install <Module Name> 每个项目的根目录下面,一般都需要一个package.json文件,定义了这个项目 ...