LIS问题
LIS定义
LIS(Longest Increasing Subsequence)最长上升子序列 。
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。
比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
O(N^2)做法:dp动态规划
状态设计:dp[i]代表以a[i]结尾的LIS的长度
状态转移:dp[i]=max(dp[i], dp[j]+1) (0<=j< i, a[j]< a[i])
边界处理:dp[i]=1 (0<=j< n)
时间复杂度:O(N^2)
举例: 对于序列(1, 7, 3, 5, 9, 4, 8),dp的变化过程如下

求完dp数组后,取其中的最大值就是LIS的长度。【注意答案不是dp[n-1],这个样例只是巧合】
简单示例代码:
#include<iostream> //
#include<string.h>//
#include<algorithm>
using namespace std; int dp[],a[];//dp[i]表示以a[i]结尾升序列的长度
int main()
{
int i,j,n,ans=;
cin>>n;
for(i=;i<n;i++){
cin>>a[i];
dp[i]=;//最短是自身
} for(i=;i<n;i++){
for(j=;j<i;j++){
if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+);
}
ans=max(ans,dp[i]);
}
cout<<ans;
return ;
}
O(NlogN)做法:贪心+二分
导弹问题:https://www.cnblogs.com/cstdio1/p/11329076.html
//注意dp数组不是最长升序列,这个方法只适合求最长长度
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
int a[N],dp[N];
int main() {
int n,len=;
cin>>n;
for(int i=;i<n;i++){
cin>>a[i];
}
dp[]=a[];
for(int i=;i<n;i++){//LIS最长增序列
if(a[i]>=dp[len]){
len++;
dp[len]=a[i];
}
else{//因为是递增数组,左边的越小,可以插入的可能性就越大,
// 所以找到第一个大于a[i]的用a[i]以替换就ok了
int p=upper_bound(dp,dp+len,a[i])-dp;
dp[p]=a[i];
} }
cout<<len+<<endl;
return ; //结束
}
LIS问题的更多相关文章
- Lis日常维护
1.[问题]护士站打印LIs条码,出来是PDF格式的 [解决]在文件夹Client\NeusoftLis\Xml\Print.xml中把BarcodePrint Name的值改成安装的斑马打印机名(不 ...
- uva10635 LIS
Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n c ...
- Codeforces 486E LIS of Sequence 题解
题目大意: 一个序列,问其中每一个元素是否为所有最长上升子序列中的元素或是几个但不是所有最长上升子序列中的元素或一个最长上升子序列都不是. 思路: 求以每一个元素为开头和结尾的最长上升子序列长度,若两 ...
- 出操队形(LIS)
题目来源:微策略2013年校园招聘面试一面试题 题目描述: 在读高中的时候,每天早上学校都要组织全校的师生进行跑步来锻炼身体,每当出操令吹响时,大家就开始往楼下跑了,然后身高矮的排在队伍的前面,身高较 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- 从LIS问题浅谈动态规划
今天以LIS问题切入动态规划,现在做一些简单的总结. LIS问题: http://www.cnblogs.com/Booble/archive/2010/11/27/1889482.html
- [noip科普]关于LIS和一类可以用树状数组优化的DP
预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...
- Hdu 3564 Another LIS 线段树+LIS
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- About LIS(Longest Increasing Subsequence)
今天528给讲了基础的DP,其中第一道例题就是最长不下降子序列——LIS. 题目简述:给出N个数,求最长不下降子序列的长度. 数据范围:30% N<=1000 ; 100% N<=1000 ...
随机推荐
- 「题解」「JOISC 2014 Day1」历史研究
目录 题目 考场思考 思路分析及标程 题目 点这里 考场思考 大概是标准的莫队吧,离散之后来一个线段树加莫队就可以了. 时间复杂度 \(\mathcal O(n\sqrt n\log n)\) . 然 ...
- Python:字典类型
概念 无序的,可变的,键值对集合 定义 方式1 {key1: value1, key2: value2, ......} 方式2 fromkeys(S, v=None) 静态方法:类和对象都可以调用 ...
- Android系统架构(图解)
下图是 Android 操作系统的架构,架构包括 4 层,由上到下依次是应用程序层.应用程序框架层.核心类库和 Linux 内核.其中,核心类库中包含系统库及 Android 运行环境. 图1 An ...
- 《Web安全攻防 渗透测试实战指南 》 学习笔记 (三)
Web安全攻防 渗透测试实战指南 学习笔记 (三) burp suite详解 是一款集成化渗透测试工 ...
- 吴裕雄 Bootstrap 前端框架开发——简例
<!DOCTYPE html> <html> <head> <title>Bootstrap 模板</title> <meta cha ...
- STC8
一 时钟: IRC:24MHZ;LSI:32.768KHZ;HSE:4~33MHZ,外设可分频 二 2种低功耗模式: IDLE:1.3MA@6MHZ,外设可唤醒. STOP: 三:ISP下载更新模式: ...
- 关系型数据库中的jsonfield字段的优劣
本人并非专业,开发经验也不太足,有一次在弄一个user数据表时,需要增加一些字段,又懒得去修改数据,就索性把这些属性封装在一个类中,序列化为json数据,存放在数据库的一个字段中了,后来,发现这么做至 ...
- 201771010131-王之泰 实验一 软件工程准备—<通读《现代软件工程—构建之法》后所思所想>周学习总结
项目 内容 作业所属课程 https://www.cnblogs.com/nwnu-daizh/ 作业要求 https://www.cnblogs.com/nwnu-daizh/p/12369881. ...
- Day11 - D - Race to 1 Again LightOJ - 1038
设dp_i为所求答案,每次选择因数的概率相同,设i有x个因数,dp_i=sum(1/x*x_j)+1,(x_j表示第j个因数),那我们就预处理每个数的因数即可,T=10000,需要预处理出答案 #in ...
- 「JSOI2014」学生选课
「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) ...