概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王
Description
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。 本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。
Input
输入文件的第一行包含一个整数 T,代表测试数据组数。
Output
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
Sample Input
3 2
0.5000 2
0.3000 3
0.9000 1
Sample Output
HINT
一共有 13 种可能的情况:
虽然概率DP是很明显了,但是状态转移方程真鸡儿难想。
思考的角度完全错了,做题的时候一直在想如何用f[i][j]表示第i轮前j张牌的期望伤害之类的,没想到正解转移的根本不是期望。。。
实际上伤害的期望值$E=k[i]\times d[i]$,其中$k[i]$为第i张牌发动技能的概率。
于是问题就转化为了求$k[i]$
设f[i][j]为转移到第i张牌的时候,还剩j轮的概率。
显然,转移到第i张牌的时候,还剩j轮的概率为 "在i-1张牌时剩j轮并未发动技能的概率" 加上 "在i-1张牌时剩j+1轮并发动技能的概率"。即$$f[i][j]=f[i-1][j]\times(1-p[i-1])^j+f[i-1][j+1]\times(1-(1-p[i-1])^j+1)$$
那么$$E_{ans}=\sum_{i=1}^n{\sum_{j=1}^r (1-(1-p[i])^j)\times f[i][j]\times d[i]}$$
代码不长。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define foru(i,x,y) for(int i=x;i<=y;i++)
using namespace std;
const int N=;
int n,T,r,d[N];
double p[N],ans,f[N][N];
int main(){
scanf("%d",&T);
while(T--){
memset(f,,sizeof(f));
scanf("%d%d",&n,&r);
f[][r]=;
foru(i,,n)scanf("%lf%d",&p[i],&d[i]);
double ans=;
foru(i,,n)
foru(j,,r){
f[i][j]=(double)f[i-][j]*pow(-p[i-],j)+f[i-][j+]*(-pow(-p[i-],j+));
ans+=(double)f[i][j]*(-pow(-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
}
return ;
}
概率DP——BZOJ4008 [HNOI2015]亚瑟王的更多相关文章
- BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...
- 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)
传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
- 【文文殿下】[BZOJ4008] [HNOI2015] 亚瑟王
题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的 ...
- BZOJ4008 [HNOI2015]亚瑟王 【概率dp】
题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...
- BZOJ4008. [HNOI2015]亚瑟王 期望概率dp
看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...
- bzoj4008: [HNOI2015]亚瑟王【期望dp】
一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...
- BZOJ4008 : [HNOI2015]亚瑟王(期望dp)
题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...
随机推荐
- CSS样式实现两个图片平分三角
<div class='pageOption'> <a href='#' class='option' > <img src='http://imgsrc.hubbles ...
- 连接数据库方法2-DBCP
DBCP(连接池): 解决对数据库建立以及关闭连接时消耗大量资源的解决方案. 程序创建和关闭对数据库连接时会消耗大量的资源,连接池技术帮我们 在程序运行的开始时就预先创建大量的连接,这些连接组成一个池 ...
- 监听配置问题,SID与Service_Name区别
监听配置问题,SID与Service_Name区别 1.数据库实例名SID 概念:数据库实例名用于和操作系统进行联系的标识,是数据库和操作系统之间的交互用的书数据库实例名.实例名也被写入参数文件中,该 ...
- delphi内嵌汇编
{ 前面知道了一个汇编的赋值指令(MOV), 再了解一个加法指令(ADD), 就可以做个例子了. 譬如: ADD AX,BX; 这相当于 Delphi 中的 AX := AX + BX; 另外提前来个 ...
- java8 String intern()
public class Solution { public static void main(String[] args) { String a = new String("he" ...
- 排序算法 python实现
一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. 排序的稳定性: 经过某种排序后,如果两 ...
- vue 动画框架Animate.css @keyframes
<script src="vue.js"></script> <link rel="stylesheet" href=" ...
- Django2.0——实现简易登陆、注册
思路: 实现简易的登陆.注册,我们至少需要三个HTML页面,一个主页面.一个登陆界面.一个注册界面.为了存储和校验用户的账号和密码,我们需要写一个模型类(用于映射到数据库).两个form类(一个登陆. ...
- 34. docker swarm Dockerstack 部署 wordpress
1. 查看 docker compose depoly 语法 官网地址 : https://docs.docker.com/compose/compose-file/#deploy ENDPOI ...
- NFS简介和配置 一
一.简介 NFS(Network File System/网络文件系统): 1).设置Linux系统之间的文件共享(Linux与Windows中间文件共享采用SAMBA服务): 2) ...