吴裕雄--天生自然 R语言开发学习:时间序列(续三)




#-----------------------------------------#
# R in Action (2nd ed): Chapter 15 #
# Time series #
# requires forecast, tseries packages #
# install.packages("forecast", "tseries") #
#-----------------------------------------# par(ask=TRUE) # Listing 15.1 - Creating a time series object in R
sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales <- ts(sales, start=c(2003, 1), frequency=12)
tsales
plot(tsales) start(tsales)
end(tsales)
frequency(tsales) tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
tsales.subset # Listing 15.2 - Simple moving averages
library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar) # Listing 15.3 - Seasonal decomposition using slt()
plot(AirPassengers)
lAirPassengers <- log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
fit <- stl(lAirPassengers, s.window="period")
plot(fit)
fit$time.series
exp(fit$time.series) par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")
par(opar) # Listing 15.4 - Simple exponential smoothing
library(forecast)
fit <- HoltWinters(nhtemp, beta=FALSE, gamma=FALSE)
fit forecast(fit, 1) plot(forecast(fit, 1), xlab="Year",
ylab=expression(paste("Temperature (", degree*F,")",)),
main="New Haven Annual Mean Temperature") accuracy(fit) # Listing 15.5 - Exponential smoothing with level, slope, and seasonal components
fit <- HoltWinters(log(AirPassengers))
fit accuracy(fit) pred <- forecast(fit, 5)
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p # Listing 15.6 - Automatic exponential forecasting with ets()
library(forecast)
fit <- ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time") # Listing 15.7 - Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile) # Listing 15.8 - Fit an ARIMA model
fit <- arima(Nile, order=c(0,1,1))
fit
accuracy(fit) # Listing 15.9 - Evaluating the model fit
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type="Ljung-Box") # Listing 15.10 - Forecasting with an ARIMA model
forecast(fit, 3)
plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow") # Listing 15.11 - Automated ARIMA forecasting
library(forecast)
fit <- auto.arima(sunspots)
fit
forecast(fit, 3)
accuracy(fit)
吴裕雄--天生自然 R语言开发学习:时间序列(续三)的更多相关文章
- 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置
下载R语言和开发工具RStudio安装包 先安装R
- 吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...
- 吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...
- 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用
假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...
- 吴裕雄--天生自然 R语言开发学习:基础知识
1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:基本图形(续二)
#---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...
随机推荐
- git 提交部分修改的文件,以及如何撤回已经add的文件
命令 1.git status //查看修改文件状态 ,可以看到哪些add了哪些没add 注意:如果此时出现了有些文件不想添加到暂存区却添加进去了,需要撤回 git reset HEAD 全部撤销gi ...
- SLAM资料
当下SLAM方案的总体介绍 http://wwwbuild.net/roboteasy/908066.html slam基础知识 https://www.zhihu.com/question/3518 ...
- android蜂巢效果、环形菜单、Kotlin影视应用、简约时钟、查看导出App、支付宝AR扫码效果等源码
Android精选源码 一个蜂巢布局管理器,外观帅气外,动画效果也是很赞 一个基础 UI 框架项目,实现不同布局格式的混排 仿建行app效果,一个环形菜单的布局管理器源码 基于组件化实现的一款用Kot ...
- Pytorch——BERT 预训练模型及文本分类
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...
- python 并发执行
并发执行, 精简代码. 适用python2 和python3 # -*- encoding:utf-8 -*- from threading import Thread from multiproce ...
- apache启动失败,提示80端口被占用
首先检查80端口被什么程序占用,方法:cmd进DOS,输入netstat -ano 80端口被为4的进程占用,有两种可能:一种情况是本机中安装了sqlserver 2008,80端口被SqlServe ...
- MySQL5.7源码安装
一.获取MySQL5.7.20源码安装包,并上传至服务器 MySQL官网下载地址:https://dev.mysql.com/downloads/mysql/ 下载版本:mysql-boost-5 ...
- JavaScript之Date常用知识点
1.new Date(dateStr) :把字符串转换为Date对象 参数: ①dateStr {string} :可转换为Date对象的字符串(可省略时间):字符串的格式主要有两种: 1) yyyy ...
- pandas常用小trick(持续更新)
记录一下pandas常用的小技巧,时间长了干别的去了会忘记,记录一下: 1. 在处理数据过程中涉及到label和null的处理方法 # 方法一 df['height'][df.height < ...
- hibernate中lazy的使用
lazy,延迟加载 Lazy的有效期:只有在session打开的时候才有效:session关闭后lazy就没效了. lazy策略可以用在: * <class>标签上:可以取值true/fa ...