文章来源:https://blog.csdn.net/on2way/article/details/46851451

  • 梯度简单来说就是求导,在图像上表现出来的就是提取图像的边缘(不管是横向的、纵向的、斜方向的等等),所需要的无非也是一个核模板,模板的不同结果也不同。所以可以看到,所有的这些个算子函数,归结到底都可以用函数cv2.filter2D()来表示,不同的方法给予不同的核模板,然后演化为不同的算子而已。并且这只是这类滤波函数的一个用途,曾经写过一个关于matlab下滤波函数imfilter()的扩展应用(等同于opencv的cv2.filter2D函数):

    图像滤波函数imfilter函数的应用及其扩展

    就是很多复杂的计算都是可以通过这个滤波函数组合实现,这样的话速度快。

(一)关于Sobel算子与Scharr算子

Sobel算子是高斯平滑与微分操作的结合体,所以其抗噪能力很强,用途较多。一般的sobel算子包括x与y两个方向,算子模板为:

sobelx=[−101−202−101]" role="presentation">sobelx=⎡⎣⎢−1−2−1000121⎤⎦⎥sobelx=[−101−202−101]
sobely=[−1−2−1000121]" role="presentation">sobely=⎡⎣⎢−101−202−101⎤⎦⎥sobely=[−1−2−1000121]

在opencv函数中,还可以设置卷积核(ksize)的大小,如果ksize=-1,就演变为3*3的Scharr算子,模板无非变了个数字:

scharrx=[−303−10010−303]" role="presentation">scharrx=⎡⎣⎢−3−10−30003103⎤⎦⎥scharrx=[−303−10010−303]
scharry=[−3−10−30003103]" role="presentation">scharry=⎡⎣⎢−303−10010−303⎤⎦⎥scharry=[−3−10−30003103]

贴一个相关详细参考:

OpenCV-Python教程(6、Sobel算子)

(二)关于拉普拉斯(Laplacian)算子

拉普拉斯算子可以实现图像的二阶倒数的定义,至于二阶倒数有什么意义,可以看这位博主的详细介绍:

OpenCV-Python教程(7、Laplacian算子)

其核模板为:

kernel=[0101−41010]" role="presentation">kernel=⎡⎣⎢0101−41010⎤⎦⎥kernel=[0101−41010]

下面是对上述三种模板的实例:

import cv2
import numpy as np
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg',0)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#默认ksize=3
sobely = cv2.Sobel(img,cv2.CV_64F,0,1)
sobelxy = cv2.Sobel(img,cv2.CV_64F,1,1)
laplacian = cv2.Laplacian(img,cv2.CV_64F)#默认ksize=3
#人工生成一个高斯核,去和函数生成的比较
kernel = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]],np.float32)#
img1 = np.float64(img)#转化为浮点型的
img_filter = cv2.filter2D(img1,-1,kernel)
sobelxy1 = cv2.Sobel(img1,-1,1,1) plt.subplot(221),plt.imshow(sobelx,'gray')
plt.subplot(222),plt.imshow(sobely,'gray')
plt.subplot(223),plt.imshow(sobelxy,'gray')
plt.subplot(224),plt.imshow(laplacian,'gray') plt.figure()
plt.imshow(img_filter,'gray')





上述一个很重要的问题需要明白的就是,在滤波函数第二个参数,当我们使用-1表示输出图像与输入图像的数据类型一致时,如果原始图像是uint8型的,那么在经过算子计算以后,得到的图像可能会有负值,如果与原图像数据类型一致,那么负值就会被截断变成0或者255,使得结果错误,那么针对这种问题有两种方式改变(上述程序中都有):一种就是改变输出图像的数据类型(第二个参数cv2.CV_64F),另一种就是改变原始图像的数据类型(此时第二个参数可以为-1,与原始图像一致)。

上述程序从结果上也说明使用函数cv2.filter2D也能达到相同的效果。

(三)Canny边缘检测算子

关于canny边缘检测算子,细究的话还算比较的复杂,给出一个介绍比较详细的博客吧:

canny算子

那么opencv中的函数也非常简单,直接cv2.Canny(),这个函数需要五个参数,原始图像,两个范围控制值minVal和maxVal(见上述原理介绍),第四个参数用于规定核模板的大小(默认3),最后一个是true与false(默认)的选择,有一点不同,不太重要,可以试着那个好用那个。

import cv2
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg',0)
edges = cv2.Canny(img,100,200)#其他的默认
plt.subplot(121),plt.imshow(img,'gray')
plt.subplot(122),plt.imshow(edges,'gray')

[Opencv]图像的梯度与边缘检测(转)的更多相关文章

  1. 图像特征提取:Sobel边缘检测

    前言 点和线是做图像分析时两个最重要的特征,而线条往往反映了物体的轮廓,对图像中边缘线的检测是图像分割与特征提取的基础.文章主要讨论两个实际工程中常用的边缘检测算法:Sobel边缘检测和Canny边缘 ...

  2. opencv——图像直方图与反向投影

    引言 在图像处理中,对于直方图这个概念,肯定不会陌生.但是其原理真的可以信手拈来吗? 本文篇幅有点长,在此列个目录,大家可以跳着看: 分析图像直方图的概念,以及opencv函数calcHist()对于 ...

  3. OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...

  4. 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...

  5. Opencv 图像叠加 添加水印

    Opencv 图像叠加 添加水印 C++: void Mat::copyTo(OutputArray m) const C++: void Mat::copyTo(OutputArray m, Inp ...

  6. opencv图像读取-imread

    前言 图像的读取和保存一定要注意imread函数的各个参数及其意义,尽量不要使用默认参数,否则就像数据格式出现错误(here)一样,很难查找错误原因的: re: 1.opencv图像的读取与保存; 完

  7. 学习 opencv---(12)OpenCV 图像金字塔:高斯金字塔,拉普拉斯金字塔与图片尺寸缩放

    在这篇文章里,我们一起学习下 图像金字塔 的一些基本概念,如何使用OpenCV函数pyrUp和pyrDown 对图像进行向上和向下采样,以及了解专门用于缩放图像尺寸的resize函数的用法.此博文一共 ...

  8. [OpenCV Qt教程] 在Qt图形界面中显示OpenCV图像的OpenGL Widget(第二部分)

    本文译自:http://www.robot-home.it/blog/en/software/tutorial-opencv-qt-opengl-widget-per-visualizzare-imm ...

  9. [OpenCV Qt教程] 在Qt图形界面中显示OpenCV图像的OpenGL Widget (第一部分)

    本文译自:http://www.robot-home.it/blog/en/software/tutorial-opencv-qt-opengl-widget-per-visualizzare-imm ...

随机推荐

  1. Linux系统下编译连接C源代码

    gcc test.c -o test 一步到位的编译指令 得到 test 文件 gcc test.c 得到 test.out 文件 gcc -g -c test.c -o test 只生成目标文件(. ...

  2. 一个Activity中使用两个layout实例

    package com.sbs.aas2l; import android.app.Activity; import android.os.Bundle; import android.view.Vi ...

  3. 摄像头的管理(camera) ---- HTML5+

    模块:camera Camera模块管理设备的摄像头,可用于拍照.摄像操作,通过plus.camera获取摄像头管理对象. 应用场景:保存自拍,保存照片,上传照片,保存视频,上传视频: 通过之前的模块 ...

  4. jconsole远程连接超时问题解决方法

    根据oracle网站上的文档,本地使用jconsole没有问题.但当我从windows连接到linux时(centos5.4)时,老是连接不上). 原因是Linux上JVM给jconsole的RMI配 ...

  5. php中 const 与define()的区别 ,选择

    来自: http://stackoverflow.com/questions/2447791/define-vs-const 相同点: 两者都可以定义常量 const FOO = 'BAR'; def ...

  6. 【Python项目篇】【爬妹子图】

    #-*- coding:utf-8 -*- import urllib import urllib2 from bs4 import beautifulsoup4 #获取标签下的内容 #打开网页,获取 ...

  7. testng多线程并行执行测试

    testng多线程并行执行测试 testng多线程并行执行测试 并行(多线程)技术在软件术语里被定义为软件.操作系统或者程序可以并行地执行另外一段程序中多个部分或者子组件的能力.TestNG允许我们以 ...

  8. Saltstack入门

    一.Salt概述 一个配置管理系统,能够维护预定义状态的远程节点(比如,确保指定的报被安装,指定的服务在运行). 一个分布式远程执行系统,用来在远程节点(可以是单个节点,也可以是任意规则挑选出来的节点 ...

  9. Linux系统——http协议原理

    Web服务基础 用户访问网页基本流程 (1)在浏览器中输入域名,系统会查找系统本地的DNS缓存及hosts文件信息,查找是否存在域名对应的IP解析记录 (2)DNS解析域名为IP地址,系统会把浏览器的 ...

  10. lua关于参数生命周期的研究

    local num = 123 local str = "abc" local tb ={} 数字和字符串类型的值作为参数传递的时候,是复制值,2个独立的内存地址 table类型的 ...