最近开始学习深度学习了,加油!

下文转载自:http://blog.sina.com.cn/s/blog_bda0d2f10101fpp4.html

主要是顺着Bengio的PAMI review的文章找出来的。包括几本综述文章,将近100篇论文,各位山头们的Presentation。全部都可以在google上找到。

BTW:由于我对视觉尤其是检测识别比较感兴趣,所以关于DL的应用主要都是跟Vision相关的。在其他方面比如语音或者NLP,很少或者几乎没有。个人非常看好CNN和Sparse Autoencoder,这个list也反映了我的偏好,仅供参考。

Review Book List:

[2009 Thesis] Learning Deep Generative Models.pdf

[2009] Learning Deep Architectures for AI.pdf

[2013 DengLi Review] Deep Learning for Signal and Information Processing.pdf

http://deeplearning.net/tutorial/deeplearning.pdf

Paper List:

[1996 Nature] sparse coding.pdf

[1997 Vision] Sparse coding with an overcomplete basis set.pdf

[1998 NIPS] EM Algorithms for PCA and SPCA.pdf

[1998 PIEEE] Gradient-Based Learning Applied to Document Recognition.pdf

[1999] Probabilistic Principal Component Analysis.pdf

[2002 NC] Training Products of Experts by Minimizing Contrastive Divergence.pdf

[2005 JMLR] Estimation of non-normalized statistical models by score matching.pdf

[2006 NC] A fast learning algorithm for deep belief nets.pdf

[2006 NIPS] Efficient Learning of Sparse Representations with an Energy-Based Model.pdf

[2006 NIPS] Efficient sparse coding algorithms.pdf

[2006 Science] Reducing the Dimensionality of Data with Neural Networks.pdf

[2006] A Tutorial on Energy-Based Learning.pdf

[2006] To Recognize Shapes, First Learn to Generate Images montrealTR.pdf

[2007 BOOK] Scaling Learning Algorithms towards AI.pdf

[2007 CVPR] Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition.pdf

[2007 ICML] Self-taught learning transfer learning from unlabeled data.pdf

[2007 NIPS TR] Greedy Layer-Wise Training of Deep Networks.pdf

[2007 NIPS] Sparse deep belief net model for visual area V2.pdf

[2007 NIPS] Sparse Feature Learning for Deep Belief Networks.pdf

[2007] Energy-Based Models in Document Recognition and Computer Vision.pdf

[2008 ICML] Extracting and Composing Robust Features with Denoising Autoencoders.pdf

[2008 ICML] Training restricted Boltzmann machines using approximations to the likelihood gradient.pdf

[2008 PSD] Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition.pdf

[2009 AISTATS] Deep Boltzmann Machines.pdf

[2009 CVPR] Learning invariant features through topographic filter maps.pdf

[2009 CVPR] Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification.pdf

[2009 ICCV] What is the Best Multi-Stage Architecture for Object Recognition.pdf

[2009 ICML] Using Fast Weights to Improve Persistent Contrastive Divergence.pdf

[2009 JMLR] Exploring Strategies for Training Deep Neural Networks.pdf

[2009 NIPS] Nonlinear Learning using Local Coordinate Coding.pdf

[2010 AISTATS] Efficient Learning of Deep Boltzmann Machines.pdf

[2010 AISTATS] On the convergence properties of contrastive divergence.pdf

[2010 CVPR] Learning Mid-Level Features For Recognition.pdf

[2010 CVPR] Locality-constrained Linear Coding for Image Classification.pdf

[2010 CVPR] Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines.pdf

[2010 ECCV] Image classification using super-vector coding of local image descriptors.pdf

[2010 ICML] A Theoretical Analysis of Feature Pooling in Visual Recognition.pdf

[2010 ICML] Deep learning via Hessian-free optimization.pdf

[2010 ICML] Learning Deep Boltzmann Machines using Adaptive MCMC.pdf

[2010 ISCAS] Convolutional Networks and Applications in Vision.pdf

[2010 JMLR] Stacked Denoising Autoencoders Learning Useful Representations.pdf

[2010 JMLR] Why Does Unsupervised Pre-training Help Deep Learning.pdf

[2010 NIPS] Learning Convolutional Feature Hierarchies for Visual Recognition.pdf

[2010 NIPS] Regularized estimation of image statistics by Score Matching.pdf

[2011 CACM] Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks.pdf

[2011 CVPR] Learning image representations from the pixel level via hierarchical sparse coding.pdf

[2011 ICCV] Adaptive Deconvolutional Networks for Mid and High Level Feature Learning.pdf

[2011 ICML] Contractive Auto-Encoders.pdf

[2011 ICML] Learning Deep Energy Models.pdf

[2011 ICML] On Autoencoders and Score Matching for Energy Based Models.pdf

[2011 ICML] On optimization methods for deep learning.pdf

[2011 ICML] Unsupervised Models of Images by Spike-and-Slab RBMs.pdf

[2011 JMLR] Unsupervised and transfer learning challenge a deep learning approach.pdf

[2011 NC] A Connection Between Score Matching and Denoising Autoencoders.pdf

[2011 NIPS] Algorithms for Hyper-Parameter Optimization.pdf

[2011 NIPS] Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery.pdf

[2011 UAI] Asymptotic efficiency of deterministic estimators for discrete energy-based models Ratio matching and pseudolikelihood.pdf

[2011] On the Expressive Power of Deep Architectures.pdf

[2012 Book] A Practical Guide to Training Restricted Boltzmann Machines.pdf

[2012 Dropout] Improving neural networks by preventing co-adaptation of feature detectors.pdf

[2012 ICML] A Generative Process for Sampling Contractive Auto-Encoders.pdf

[2012 ICML] Building High-level Features Using Large Scale Unsupervised Learning.pdf

[2012 ICML] Large-Scale Feature Learning With Spike-and-Slab Sparse Coding.pdf

[2012 JMLR] Random Search for Hyper-Parameter Optimization.pdf

[2012 NC] An Efficient Learning Procedure for Deep Boltzmann Machines.pdf

[2012 NIPS] A Better Way to Pre-Train Deep Boltzmann Machines.pdf

[2012 NIPS] Discriminative Learning of Sum-Product Networks.pdf

[2012 NIPS] ImageNet Classification with Deep Convolutional Neural Networks.pdf

[2012 NIPS] Practical Bayesian Optimization of Machine Learning Algorithms.pdf

[2012] Deep Learning via Semi-Supervised Embedding.pdf

[2013 BOOK] Deep Learning of Representations.pdf

[2013 ICLR] Stochastic Pooling for Regularization of Deep Convolutional Neural Networks.pdf

[2013 ICLR] What Regularized Auto-Encoders Learn from the Data Generating Distribution.pdf

[2013 ICML] Better Mixing via Deep Representations.pdf

[2013 ICML] No more pesky learning rates.pdf

[2013 ICML] On autoencoder scoring.pdf

[2013 ICML] On the importance of initialization and momentum in deep learning.pdf

[2013 ICML] Regularization of Neural Networks using DropConnect.pdf

[2013 NIPS] Adaptive dropout for training deep neural networks.pdf

[2013 NIPS] Deep Fisher Networks for Large-Scale Image Classification.pdf

[2013 NIPS] Deep Neural Networks for Object Detection.pdf

[2013 NIPS] Dropout Training as Adaptive Regularization.pdf

[2013 NIPS] Generalized Denoising Auto-Encoders as Generative Models.pdf

[2013 NIPS] Learning a Deep Compact Image Representation for Visual Tracking.pdf

[2013 NIPS] Learning Multi-level Sparse Representations.pdf

[2013 NIPS] Understanding Dropout.pdf

[2013 PAMI] Deep Hierarchies in the Primate Visual Cortex What Can We Learn For Computer Vision.pdf

[2013 PAMI] Deep Learning with Hierarchical Convolutional Factor Analysis.pdf

[2013 PAMI] Invariant Scattering Convolution Networks.pdf

[2013 PAMI] Learning Hierarchical Features for Scene Labeling.pdf

[2013 PAMI] Learning with Hierarchical-Deep Models.pdf

[2013 PAMI] Representation Learning A Review and New Perspectives.pdf

[2013 PAMI] Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning.pdf

[2013 TR] Maxout networks.pdf

[2013 TR] Practical recommendations for gradient-based training of deep architectures.pdf

[2013] Network in Network.pdf

[2013] Visualizing and Understanding Convolutional Networks.pdf

Presentation List:

2007 Deep Belief Nets by hinton on nips2007.pdf

2009 Learning Deep Architectures by Yoshua Bengio.pdf

2010 Tutorial on Deep Learning and Applications by Honglak Lee on nips2010 workshop.pdf

2010 Unsupervised Learning by ranzato on nips2010 workshop.pdf

2012 A Tutorial on Deep Learning by yukai.pdf

2012 Deep Learning Methods for Vision on cvpr2012.pdf

2013 Deep Learning for Computer Vision by Rob Fergus on icml2013.pdf

2013 Deep Learning for Vision Tricks of the Trade by ranzato on bavm2013.pdf

2013 Deep Learning of Representations by Yoshua Bengio on aaai2013.pdf

2013 Deep Learning of Representations by Yoshua Bengio on sstic2013.pdf

2013 Deep Learning Tutorial by  lecun && ranzato on icml2013.pdf

2013 Large-Scale Visual Recognition With Deep Learning by ranzato on cvpr2013.pdf

2013 Recent Advances in Deep Learning by Kevin Duh.pdf

2013 Recent Developments in Deep Neural Networks by hinton on icassp2013.pdf

DeepLearning_SummerSchool\2012 Advanced Hierarchical Models by Salakhutdinov on ipam2012.pdf

DeepLearning_SummerSchool\2012 An Algebraic Perspective on Deep Learning on ipam2012.pdf

DeepLearning_SummerSchool\2012 An Informal Mathematical Tour of Feature Learning on ipam2012.pdf

DeepLearning_SummerSchool\2012 Deep Gated MRF's on ipam2012.pdf

DeepLearning_SummerSchool\2012 Deep Learning & Feature Learning Methods for Vision on ipam2012.pdf

DeepLearning_SummerSchool\2012 Deep learning in the visual cortex on ipam2012.pdf

DeepLearning_SummerSchool\2012 Deep Learning Tutorial by hinton on ipam2012.pdf

DeepLearning_SummerSchool\2012 Deep Learning, Graphical Models, EnergyBased Models, Structured Prediction by LeCun on ipam2012.pdf

DeepLearning_SummerSchool\2012 From natural scene statistics to models of neural coding and representation on ipam2012.pdf

DeepLearning_SummerSchool\2012 Introduction to MCMC for Deep Learning on ipam 2012.pdf

DeepLearning_SummerSchool\2012 Large-Scale Deep Learning on ipam2012.pdf

DeepLearning_SummerSchool\2012 Learning Hierarchical Generative Models on ipam2012.pdf

DeepLearning_SummerSchool\2012 Learning Hierarchies of Invariant Features by LeCun on ipam 2012.pdf

DeepLearning_SummerSchool\2012 Machine Learning and AI via Brain simulations by Andrew Ng on ipam2012.pdf

DeepLearning_SummerSchool\2012 Multiview Feature Learning on ipam2012.pdf

DeepLearning_SummerSchool\2012 Neural Networks Representation Non-linear hypotheses on ipam2012.pdf

DeepLearning_SummerSchool\2012 Scattering Invariant Deep Networks for Classification by Mallat on ipam2012.pdf

Deep Learning关于Vision的Reading List的更多相关文章

  1. My deep learning reading list

    My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...

  2. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  3. DEEP LEARNING WITH STRUCTURE

    DEEP LEARNING WITH STRUCTURE Charlie Tang is a PhD student in the Machine Learning group at the Univ ...

  4. Adventures in deep learning

    转:https://github.com/GKalliatakis/Adventures-in-deep-learning Adventures in deep learning State-of-t ...

  5. 深度学习阅读列表 Deep Learning Reading List

    Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...

  6. 视觉中的深度学习方法CVPR 2012 Tutorial Deep Learning Methods for Vision

    Deep Learning Methods for Vision CVPR 2012 Tutorial  9:00am-5:30pm, Sunday June 17th, Ballroom D (Fu ...

  7. Deep Learning Papers Reading Roadmap

    Deep Learning Papers Reading Roadmap https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadm ...

  8. My Reading List - Machine Learning && Computer Vision

    本博客汇总了个人在学习过程中所看过的一些论文.代码.资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中. Machine Learning (1) Machine Learnin ...

  9. Deep learning Reading List

    本文来自:http://jmozah.github.io/links/ Following is a growing list of some of the materials i found on ...

随机推荐

  1. [转]dwr3框架学习笔记--简介及原理简介

    1.DWR简介 DWR(直接web远程访问),DWR是一个Java库,使服务器上的Java和JavaScript的浏览器进行交互和相互调用尽可能简单. DWR 是一个可以允许你去创建 AJAX WEB ...

  2. java笔试面试01

    今天给大家分享一下小布去广州华南资讯科技公司笔试和面试的过程. 过程:1.HR面试  2.笔试  3.技术面试 小布下午两点到达,进门从前台领了一张申请表,填完之后带上自己的简历到4楼就开始HR面试. ...

  3. js保留两位小数,不四舍五入

    //不进行四舍五入,保留两位小数 function getKeepTwoDecimals(val) { var newVal = (parseInt(val * 100) / 100).toFixed ...

  4. PAT java大数 A+B和C

    题目描述: 给定区间[-, ]内的3个整数A.B和C,请判断A+B是否大于C. 输入格式: 输入第1行给出正整数T(<=),是测试用例的个数.随后给出T组测试用例,每组占一行,顺序给出A.B和C ...

  5. 【SSH】——梳理三大框架

    [前言] 去年软考,从System.out.println("Hello World!")开始,小编也算是进入java的世界了.转战java以后,虽然仍旧在学习.NET的知识,但越 ...

  6. 【Solr】——Solr7安装教程

    前提 solr已经升级7.1,但是我们公司的solr还是使用的4.4,你们说low不low!!!重要的是,人家花费了大气将solr升级,从技术的角度来说solr7比solr4那是翻天覆地的改变! so ...

  7. To Chromium之浏览器外框UI

    先不去管那些webkit,V8 engine, Parser, security,IPC... 先来看看Chromium的外框UI是那些code负责的,如果自己可以定制化一下,应该蛮好玩的. TBD. ...

  8. [剑指Offer] 21.栈的压入、弹出序列

    题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序 ...

  9. 更换Sublime Text主题字体

    Sublime Text作为脚本程序开发工具是一个不错的选择,支持多种语言,支持代码高亮显示,必要时还有代码提示功能.但是有的主题字体实在是难看,不过Sublime Text中也是可以更改的,只是更改 ...

  10. Numpy array学习笔记