bzoj 1022 SJ定理
与传统的SG游戏不同的是,完成最后一个状态的人是输的,我们把这一类问题称作Anti-SG,这类问题的解决我们需要引入一个定理—SJ定理:
对于任意一个Anti-SG游戏,如果我们规定当局面中所有的单一游戏的SG值为0时,游戏结束,则先手必胜当且仅当:(1)游戏的SG函数不为0且游戏中某个单一游戏的SG函数大于1;(2)游戏的SG函数为0且游戏中没有单一游戏的SG函数大于1。 (引自2009年国家集训队论文贾志豪论文《组合游戏概述——浅谈SG游戏的若干拓展及变形》)
这样对于这个问题我们就可以很好的解决了:
1、所有堆的石子数都为1且游戏的SG值为0;
2、有些堆的石子数大于1且游戏的SG值不为0。
只有这两种请情况下是先手必胜状态,否则为先手必败状态。
/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ //By BLADEVIL
var
task :longint;
i :longint;
n :longint;
a :array[..] of longint; procedure main;
var
i :longint;
ans :longint;
f :boolean;
begin
read(n);
ans:=;
for i:= to n do read(a[i]);
for i:= to n do ans:=ans xor a[i];
f:=false;
if ans= then
begin
for i:= to n do if a[i]<> then f:=true;
end else
for i:= to n do if a[i]> then f:=true;
if (ans=) and (not f) or (ans<>) and (f) then writeln('John') else writeln('Brother');
end; begin
read(task);
for i:= to task do main;
end.
bzoj 1022 SJ定理的更多相关文章
- BZOJ 1022: [SHOI2008]小约翰的游戏John [SJ定理]
传送门 $anti-nim$游戏,$SJ$定理裸题 规定所有单一游戏$sg=0$结束 先手必胜: $1.\ sg \neq 0,\ 某个单一游戏sg >1$ $2.\ sg = 0,\ 没有单一 ...
- [BZOJ1022] [SHOI2008] 小约翰的游戏John (SJ定理)
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- 博弈论进阶之Anti-SG游戏与SJ定理
前言 在上一节中,我们初步了解了一下SG函数与SG定理. 今天我们来分析一下SG游戏的变式--Anti-SG游戏以及它所对应的SG定理 首先从最基本的Anti-Nim游戏开始 Anti-Nim游戏是这 ...
- 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)
首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...
- 【HDU 3590】 PP and QQ (博弈-Anti-SG游戏,SJ定理,树上删边游戏)
PP and QQ Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- POJ 3480 John(SJ定理博弈)题解
题意:n堆石头,拿走最后一块的输 思路:SJ定理:先手必胜当且仅当:(1)游戏的SG函数不为0且游戏中某个单一游戏的SG函数大于1:(2)游戏的SG函数为0且游戏中没有单一游戏的SG函数大于1. 参考 ...
- SJ定理——省选前的学习2
——博弈论?上SG定理!什么?不行?那就SJ定理吧. 原来还有这么个玩意... bzoj1022. 大意是Nim取石子游戏中取到最后一个石子就算输,即无法取了就获胜(原版是无法取了就输). 我们试图套 ...
- [您有新的未分配科技点]博弈论进阶:似乎不那么恐惧了…… (SJ定理,简单的基础模型)
这次,我们来继续学习博弈论的知识.今天我们会学习更多的基础模型,以及SJ定理的应用. 首先,我们来看博弈论在DAG上的应用.首先来看一个小例子:在一个有向无环图中,有一个棋子从某一个点开始一直向它的出 ...
- BZOJ 1022 小约翰的游戏(anti-sg)
这是个anti-sg问题,套用sj定理即可解. SJ定理 对于任意一个Anti-SG游戏,如果定义所有子游戏的SG值为0时游戏结束,先手必胜的条件: 1.游戏的SG值为0且所有子游戏SG值均不超过1. ...
随机推荐
- python简单的数据清洗,数据筛选方法归类
创建数组有两种方式,1.直接赋值 2.随机变量生成随机生成包括4种:np.arange(20),np.linspace(0,10,5),np.logspace(0,2,5),np.random.ran ...
- Mac上配置Cocos2d-x开发环境(多平台:Android/iOS)
下载以下资源: Cocos2d-x (http://www.cocos2d-x.org) Android NDK(http://developer.android.com/tools/sdk/ndk/ ...
- 「暑期训练」「Brute Force」 Restoring Painting (CFR353D2B)
题意 给定一定条件,问符合的矩阵有几种. 分析 见了鬼了,这破题谁加的brute force的标签,素质极差.因为范围是1e5,那你平方(枚举算法)的复杂度必然爆. 然后你就会思考其中奥妙无穷的数学规 ...
- 怎样安装PyCharm
在地址栏输入http://www.jetbrains.com/pycharm/ 打开PyCharm官网 http://idea.lanyus.com/
- 12.0 Excel表格读取
Pycharm安装 xlrd 首先在xuexi目录下创建一个ExcelFile文件,让后在ExcelFile下创建一个Excel表格 创建表格时记得把单元格的格式设置为[文本] 我们设置为文本之后,存 ...
- cocos2d-x 动作类
动作类是Action IntervalAction是间隔动作,InstantAction是瞬时动作. 动作的管理是要由节点负责的,任何的节点都可以管理节点,如精灵.菜单.层.甚至场景都可以管理动作.节 ...
- xadmin站点管理面样样式控制
xadmin可以使用的页面样式控制基本与Django原生的admin一直. list_display 控制列表展示的字段 search_fields 控制可以通过搜索框搜索的字段名称,xadmin使用 ...
- Chrome 与 Firefox-Dev 的 DevTools
不管是做爬虫还是写 Web App,Chrome 和 Firefox 的 DevTools 都是超常用的,但是经常发现别人的截图有什么字段我找不到,别人的什么功能我的 Chrome 没有,仔细一搜索才 ...
- 【转】 cocos2dx 3.x C++搭建protobuf环境
http://blog.csdn.net/ganpengjin1/article/details/50964961 Cocos2dx 里面在网络游戏通信这一块一般我们都会采用protobuf来进行通信 ...
- PAT 1089 狼人杀-简单版
https://pintia.cn/problem-sets/994805260223102976/problems/1038429385296453632 以下文字摘自<灵机一动·好玩的数学& ...