Query on a tree 树链剖分 [模板]
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions "CHANGE i ti" or "QUERY a b",
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "QUERY" operation, write one integer representing its result.
Example
Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
struct node {
int to, nxt;
}e[maxn];
int head[maxn], tot;
int top[maxn];// top[v]表示v所在的重链的顶点
int fa[maxn];
int dep[maxn];
int num[maxn];// num[v]表示以v为根的子树大小
int p[maxn];// p[v]表示v与其父亲节点在线段树的位置
int fp[maxn];
int son[maxn];// 重儿子
int pos;
int n; void init() {
tot = 0; memset(head, -1, sizeof(head));
pos = 1; memset(son, -1, sizeof(son));
}
void addedge(int u, int v) {
e[tot].to = v; e[tot].nxt = head[u]; head[u] = tot++;
} void dfs1(int u, int pre, int d) {
dep[u] = d; fa[u] = pre; num[u] = 1;
for (int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v != pre) {
dfs1(v, u, d + 1);
num[u] += num[v];
if (son[u] == -1 || num[v] > num[son[u]])son[u] = v;
}
}
} void dfs2(int u, int sp) {
top[u] = sp;
if (son[u] != -1) {
p[u] = pos++;
fp[p[u]] = u;
dfs2(son[u], sp);
}
else {
p[u] = pos++; fp[p[u]] = u; return;
}
for (int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v != son[u] && v != fa[u])dfs2(v, v);
}
} #define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int maxx[maxn];
int val[maxn];
void pushup(int rt) {
maxx[rt] = max(maxx[rt << 1], maxx[rt << 1 | 1]);
}
void build(int l, int r, int rt) {
if (l == r) {
maxx[rt] = val[l]; return;
}
int m = (l + r) >> 1;
build(lson); build(rson); pushup(rt);
}
void upd(int p, int x, int l, int r, int rt) {
if (l == r) {
maxx[rt] = x; return;
}
int m = (l + r) >> 1;
if (p <= m)upd(p, x, lson);
else upd(p, x, rson);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return maxx[rt];
}
int m = (l + r) >> 1;
int ans = 0;
if (L <= m)ans = max(ans, query(L, R, lson));
if (m < R)ans = max(ans, query(L, R, rson));
return ans;
} int Find(int u, int v) {
int f1 = top[u], f2 = top[v];
int tmp = 0;
while (f1 != f2) {
if (dep[f1] < dep[f2]) {
swap(f1, f2); swap(u, v);
}
tmp = max(tmp, query(p[f1], p[u], 1, n, 1));
u = fa[f1]; f1 = top[u];
}
if (u == v)return tmp;
if (dep[u] > dep[v])swap(u, v);
return max(tmp, query(p[son[u]], p[v], 1, n, 1));
}
int ed[maxn][3]; int main()
{
// ios::sync_with_stdio(0);
int t; t = rd();
while (t--) {
init(); n = rd();
// getchar();
for (int i = 0; i < n - 1; i++) {
ed[i][0] = rd(); ed[i][1] = rd(); ed[i][2] = rd();
addedge(ed[i][0], ed[i][1]);
addedge(ed[i][1], ed[i][0]);
}
dfs1(1, 0, 0); dfs2(1, 1);
for (int i = 0; i < n - 1; i++) {
if (dep[ed[i][0]] < dep[ed[i][1]]) {
swap(ed[i][0], ed[i][1]);
}
val[p[ed[i][0]]] = ed[i][2];
}
build(1, n, 1);
char opt[10];
while (scanf("%s",opt)) {
if (opt[0] == 'D')break;
int u, v; u = rd(); v = rd();
if (opt[0] == 'Q') {
printf("%d\n", Find(u, v));
}
else upd(p[ed[u - 1][0]], v, 1, n, 1);
}
}
return 0;
}
Query on a tree 树链剖分 [模板]的更多相关文章
- SPOJ 375 Query on a tree 树链剖分模板
第一次写树剖~ #include<iostream> #include<cstring> #include<cstdio> #define L(u) u<&l ...
- Hdu 5274 Dylans loves tree (树链剖分模板)
Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...
- spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)
传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...
- spoj 375 QTREE - Query on a tree 树链剖分
题目链接 给一棵树, 每条边有权值, 两种操作, 一种是将一条边的权值改变, 一种是询问u到v路径上最大的边的权值. 树链剖分模板. #include <iostream> #includ ...
- SPOJ Query on a tree 树链剖分 水题
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- Query on a tree——树链剖分整理
树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...
- SPOJ QTREE Query on a tree 树链剖分+线段树
题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...
- spoj 375 Query on a tree (树链剖分)
Query on a tree You are given a tree (an acyclic undirected connected graph) with N nodes, and edges ...
- SPOJ QTREE Query on a tree ——树链剖分 线段树
[题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...
随机推荐
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 5 Octave Tutorial—5.6 向量化 Vectorization
5.6 向量化 Vectorization 参考视频: 5 - 6 - Vectorization (14 min).mkv 下面是向量化的小例子,如果将所有u(j) .所有v(j).所有w(j)都看 ...
- BigDecimal与double
前几天,系统处理double类型的加减法,出现问题. 请看题: 示例1 问, 结果是多少? 0.01? No! 结果是0.009999999999999998! 为什么会这样呢? 因为float和do ...
- Texture Filter
[Texture Filter] 我们的纹理是要贴到三维图形表面的,而三维图形上的pixel中心和纹理上的texel中心并不一至(pixel不一定对应texture上的采样中心texel),大小也不一 ...
- ReactNative项目创建及结构分析
- linux内核被加载的过程
二,linux内核被加载的过程 一,linux安装时遇到的概念解析 内核必须模块vmlinz(5M左右)不认识硬盘,原本是需要写跟loader中一样的内容,来加载非必要模块. 内核非必要的功能被编译为 ...
- 为什么要有http响应码
其实还是比较容易理解的.这就和你去小卖部买东西一样,老板,我想要一袋大米,那老板先得回答有还是没有,还是说我们这没有,去其它地方买去吧,得先给个说法,这个说法就是http相应码,有了http响应码之后 ...
- c语言实践:求两个数的最大公约数
我的思路是这样的:比如12和16这两个数.先理解一下概念,什么叫最大公约数.就是12有很多个因数,16也有很多个因数,这两堆因数中有一些重合的因数,在这些重合的因数中找到那个最大的.那么最大公约数一定 ...
- 数据库 MySQL 之 基本概念
数据库 MySQL 之 基本概念 浏览目录 概述 数据库的特点 数据库的分类 选择MySQL的理由 & MariaDB 介绍 下载及安装 SQL介绍 一.概述 1.数据(data) 存储在表中 ...
- javascript总结8:JavaScript 类型转换
1 JavaScript 数据类型转换 1.1 数字类型转字符串 n1 = 10;var n2 =String(n1); 或者 var n3 = n1.toString(n1); 1.2 字符串转数字 ...
- HDU 4803 Poor Warehouse Keeper(贪心)
题目链接 题意 :屏幕可以显示两个值,一个是数量x,一个是总价y.有两种操作,一种是加一次总价,变成x,1+y:一种是加一个数量,这要的话总价也会相应加上一个的价钱,变成x+1,y+y/x.总价显示的 ...